Correlation Filter Tracking Based on Deep Spatial Regularization
PU Lei1, FENG Xin-xi2, HOU Zhi-qiang3, ZHA Yu-fei4, YU Wang-sheng2
1. Graduate College, Air Force Engineering University, Xi'an, Shaanxi 710077, China;
2. Institute of Information and Navigation, Air Force Engineering University, Xi'an, Shaanxi 710077, China;
3. School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China;
4. School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
Abstract:In recent years,the correlation filter based algorithm combined with deep features has received extensive attention.The period assumption of the training samples improves the computational efficiency,but also introduces the boundary effect,which limits the further improvement of the tracking performance.By exploring the deep feature representation ability,a new tracking framework is proposed.Since the deep features have good semantic information,the fifth layer convolution feature of VGG network is used to extract the spatially reliable region of the target,and the region information is introduced into the objective function to establish a spatial constraint model.Then iteratively solved by ADMM algorithm.In order to further improve the long-time tracking ability,a simple and effective method of occlusion detection is proposed.Experimental results show that the proposed algorithm outperforms most advanced algorithms in tracking accuracy and success rate.
[1] RAWAT W,WANG Z.Deep convolutional neural networks for image classification:A comprehensive review[J].Neural Computation,2017,29(9):2352-2449.doi:10.1162/neco_a_00990.
[2] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2014.580-587.doi:10.1109/CVPR.2014.81.
[3] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2015.3431-3440.doi:10.1109/TPAMI.2016.2572683.
[4] SMEULDERS A W M,CHU D M,CUCCHIARA R,et al.Visual tracking:an experimental survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,36(7):1442-1468.doi:10.1109/TPAMI.2013.230.
[5] WANG Naiyan,SHI Jianping,YEUNG Dityan,et al.Understanding and diagnosing visual tracking systems[A].IEEE International Conference on Computer Vision[C].Santiago,Chile:IEEE,2015.3101-3109.doi:1109/ICCV.2015.355.
[6] 余旺盛,李卫华,侯志强.分层结构直方图及其应用[J].电子学报,2017,45(11):2617-2624. YU Wang-sheng,LI Wei-hua,HOU Zhi-qiang.Hierarchical structure histogram and its application[J].Acta Electronica Sinica,2017,45(11):2617-2624.(in Chinese)
[7] 查宇飞,吴敏,库涛,等.基于位置敏感模型的深度跟踪算法研究[J].电子学报,2019,47(10):2076-2082. ZHA Yufei,WU Min,KU Tao,et al.Deep tracking algorithm research based on location-sensitive model[J].Acta Electronica Sinica,2019,47(10):2076-2082.(in Chinese)
[8] BOLME D S,BEVERIDGE J R,DRAPER B A,et al.Visual object tracking using adaptive correlation filters[A].IEEE Conference on Computer Vision and Pattern Recognition[C].San Francisco,CA,US:IEEE,2010.2544-2550.doi:10.1109/CVPR.2010.5539960.
[9] HENRIQUES J F,CASEIRO R,MARTINS P,et al.Exploiting the circulant structure of tracking-by-detection with kernels[A].Proceedings of European Conference on Computer Vision[C].Florence,Italy,2012.702-715.doi:10.1007/978-3-642-33765-9_50.
[10] DANELLJAN M,SHAHBAZ K F,FELSBERG M,et al.Adaptive color attributes for real-time visual tracking[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2014.1090-1097.doi:10.1109/CVPR.2014.143.
[11] HENRIQUES J F,RUI C,MARTINS P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(3):583-596.doi:10.1109/tpami.2014.2345390.
[12] RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.doi:10.1007/s11263-015-0816-y.
[13] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[A].International Conference on Learning Representations[C].ICLR,2015.1-14.
[14] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[A].IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2016.770-778.doi:10.1109/CVPR.2016.90.
[15] MA Chao,HUANG Jiabin,YANG Xiaokang,et al.Hierarchical convolutional features for visual tracking[A].IEEE International Conference on Computer Vision[C].Santiago,Chile:IEEE,2015.3074-3082.doi:10.1109/ICCV.2015.352.
[16] QI Yuankai,ZHANG Shenging,QIN Lei,et al.Hedged deep tracking[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2016.4303-4311.doi:10.1109/CVPR.2016.466.
[17] Valmadre J,Bertinetto L,Henriques,João F,et al.End-to-end representation learning for Correlation Filter based tracking[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2017.5000-5008.doi:10.1109/CVPR.2017.531.
[18] GALOOGAHI H K,SIM T,LUCEY S.Correlation filters with limited boundaries[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Boston,MA,USA:IEEE,2015.4630-4638.doi:10.1109/CVPR.2015.7299094.
[19] DANELLJAN M,HAGER G,SHAHBAZ KHAN F,et al.Learning spatially regularized correlation filters for visual tracking[A].Proceedings of the IEEE International Conference on Computer Vision[C].USA:IEEE,2015.4310-4318.doi:10.1109/ICCV.2015.490.
[20] Galoogahi H K,Fagg A,Lucey S.Learning background-aware correlation filters for visual tracking[A].ICCV[C].USA:IEEE,2017.1135-1143.
[21] LI Feng,TIAN Cheng,ZUO Wangmeng,et al.Learning spatial-temporal regularized correlation filters for visual tracking[A].Computer Vision and Pattern Recognition[C].Salt Lake City,USA,2018.4904-4913.
[22] Boyd S.Distributed optimization and statistical learning via the alternating direction method of multipliers[J].FNT in Machine Learning,2011,3(1):1-122.doi:10.1561/2200000016.
[23] Wei X-S,Luo J-H,Wu J,Zhou Z-H.Selective convolutional descriptor aggregation for fine-grained image retrieval[J].IEEE TIP,2017,26(6):2868-2881.
[24] Pearson K.On lines and planes of closest fit to systems of points in space[J].Philosophical Magazine,1901,2(11):559-572.
[25] DANELLJAN M,ROBINSON A,KHAN F S,et al.Beyond correlation filters:Learning continuous convolution operators for visual tracking[A].European Conference on Computer Vision[C].Cham:Springer,2016.472-488.doi:10.1007/978-3-319-46454-1_29.
[26] VEDALDI A,LENC K.Matconvnet:Convolutional neural networks for matlab[A].Proceedings of the 23rd ACM International Conference on Multimedia[C].USA:ACM,2015.689-692.doi:10.1145/2733373.2807412.
[27] DANELLJAN M,HÄGER G,KHAN F,et al.Accurate scale estimation for robust visual tracking[A].Proceedings of British Machine Vision Conference[C].Nottingham,UK,2014.65.1-65.11.doi:10.5244/C.28.65.
[28] WU Yi,LIM Jongwoo,YANG Minghsuan.Online object tracking:a benchmark[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Portland,OR,USA:IEEE,2013.2411-2418.doi:10.1109/CVPR.2013.312.
[29] WU Y,LIM J,YANG M H.Object tracking benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1834-1848.doi:10.1109/TPAMI.2014.2388226.
[30] DANELLJAN M,HAGER G,SHAHBAZ KHAN F,et al.Adaptive decontamination of the training set:A unified formulation for discriminative visual tracking[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2016.1430-1438.
[31] BERTINETTO L,VALMADRE J,HENRIQUES J F,et al.Fully-convolutional siamese networks for object tracking[A].European Conference on Computer Vision[C].Cham:Springer,2016.850-865.
[32] Wang Q,et al.DCFNet:Discriminant correlation filters network for visual tracking[A].Computer Vision and Pattern Recognition[C].DBLP,2017.arXiv:abs/1704.04057.
[33] DANELLJAN M,HAGER G,SHAHBAZ KHAN F,et al.Convolutional features for correlation filter based visual tracking[A].Proceedings of the IEEE International Conference on Computer Vision Workshops[C].USA:IEEE,2015.58-66.doi:10.1109/ICCVW.2015.84.
[34] Bertinetto L,et al.Staple:Complementary learners for real-time tracking[A].2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Las Vegas,NV,USA:IEEE,2016.1401-1409.doi:10.1109/CVPR.2016.156.