基于教与学优化算法的相关反馈图像检索
毕晓君, 潘铁文
哈尔滨工程大学信息与通信工程学院, 黑龙江哈尔滨 150001
Relevance Feedback Image Retrieval Based on Teaching-learning-based Optimization Algorithm
BI Xiao-jun, PAN Tie-wen
College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
摘要 为提高基于内容的图像检索的检索性能和检索速度,克服低层视觉特征与高层语义概念间的“语义鸿沟”,提出一种基于教与学优化的图像检索相关反馈算法(TLBO-RF).结合图像检索问题的特殊性和粒子群优化算法的优点,对TLBO算法中个体的更新机制进行了改进,通过将相关图像集的中心作为教师以及引入学员最好学习状态Pbest,使之朝用户感兴趣的相关图像区域快速收敛.将该算法与目前效果最好的两种基于进化算法的相关反馈技术在两套标准图像测试集上进行对比,结果表明本文算法相较于另外两种算法具有明显的优势,不仅提高了图像检索性能,同时也加快了图像检索速度,更好地满足了用户的检索要求.
关键词 :
基于内容的图像检索 ,
相关反馈 ,
教与学优化算法 ,
粒子群优化算法
Abstract :To improve the performance of image retrieval,and accelerate the speed of image retrieval in content-based image retrieval and reduce the "semantic gap" between visual low-level features and high-level semantic,relevance feedback image retrieval based on teaching-learning-based optimization algorithm is proposed (TLBO-RF).Considering the specificity of image retrieval and the advantage of the PSO,the update strategy of individual is modified in TLBO,the center of the relevant images is regarded as the teacher and the personal best is introduced,which makes the algorithm converge fast to the region of relevant images that the user is interested in.TLBO-RF is compared to two state-of-the-art RFs based on evolutionary algorithm on two benchmark images.The results show that TLBO-RF has obvious advantage in comparison with other two algorithms,not only increases the performance of image retrieval,but also improves the image retrieval speed,and can better meet the user needs of image retrieval.
Key words :
content-based image retrieval
relevance feedback
TLBO
PSO
收稿日期: 2015-11-04
出版日期: 2016-08-26
基金资助: 国家自然科学基金(No.61175126);国家国际科技合作专项(No.2015DFG12150)
作者简介 : 毕晓君 ,女,1964年11月生于黑龙江省哈尔滨.哈尔滨工程大学信息与通信工程学院教授、博士生导师.主要研究方向为智能信息处理、图像处理.E-mail:bixiaojun@hrbeu.edu.cn;潘铁文 ,男,1984年生于辽宁省鞍山市.哈尔滨工程大学信息与通信工程学院博士研究生,研究方向为进化算法、图像处理.E-mail:pantiewen@hrbeu.edu.cn
[1] KUNDU Malay Kumar,CHOWDHURY Manish,BULò Samuel Rota.A graph-based relevance feedback mechanism in content-based image retrieval[J].Knowledge-Based Systems,2015,73:254-264.
[2] 冯松鹤,郎丛妍,须德.一种融合图学习与区域显著性分析的图像检索算法[J].电子学报,2011,39(10):2288-2294. FENG Song-he,LANG Cong-yan,XU De.Combining graph learning and region saliency analysis for content-based image retrieval[J].Acta Electronica Sinica,2011,39(10):2288-2294.(in Chinese)
[3] THOMEE Bart,LEW Michael S.Interactive search in image retrieval:a survey[J].International Journal of Multimedia Information Retrieval,2012,1(2):71-86.
[4] 周燕,曾凡智,赵慧民,卢炎生,周月霞.一种基于精细化稀疏自适应匹配追踪算法的图像检索方法研究[J].电子学报,2014,42(12):2457-2466. ZHOU Yan,ZENG Fan-zhi,ZHAO Hui-min,et al.An image retrieval method based on meticulous sparsity adaptive matching pursuit algorithm[J].Acta Electronica Sinica,2014,42(12):2457-2466.(in Chinese)
[5] LIU Ying,ZHANG Deng-sheng,LU Guo-jun,MA Wei-ying.A survey of content-based image retrieval with high-level semantics[J].Pattern Recognition,2007,40(1):262-282.
[6] 许相莉,张利彪,刘向东,等.基于粒子群的图像检索相关反馈算法[J].电子学报,2010,38(8):1935-1940. XU Xiang-li,ZHANG Li-biao,LIu Xiang-dong,et al.Image retrieval relevance feedback algorithm based on particle swarm optimization[J].Acta Electronica Sinica,2010,38(8):1935-1940.(in Chinese)
[7] 吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. WU Hong,LU Han-qing,MA Song-de.A survey of relevance feedback techniques in content-based image retrieval[J].Chinese Journal of Computers,2005,28(12):1969-1979.(in Chinese)
[8] AREVALILLO-HERRáEZ Miguel,FERRI Francesc J,MORENO-PICOT Salvador.A hybrid multi-objective optimization algorithm for content based image retrieval[J].Applied Soft Computing,2013,13(11):4358-4369.
[9] AREVALILLO-HERRáEZ Miguel,FERRI Francesc J,MORENO-PICOT Salvador.Distance-based relevance feedback using a hybrid interactive genetic algorithm for image retrieval[J].Applied Soft Computing,2011,11(2):1782-1791.
[10] BROILO Mattia,DE NATALE Francesco Gb.A stochastic approach to image retrieval using relevance feedback and particle swarm optimization[J].IEEE Transactions on Multimedia,2010,12(4):267-277.
[11] LAI Chi-chi,CHEN Ying-chuan.A user-oriented image retrieval system based on interactive genetic algorithm[J].IEEE Transactions on Instrumentation and Measurement,2011,60(10):3318-3325.
[12] KANIMOZHI T,LATHA K.An integrated approach to region based image retrieval using firefly algorithm and support vector machine[J].Neurocomputing,2015,151:1099-1111.
[13] RAO Ravipudi V,SAVSANI Vimal J,VAKHARIA Dp.Teaching-learning-based optimization:a novel method for constrained mechanical design optimization problems[J].Computer-Aided Design,2011,43(3):303-315.
[14] ZHANG Yong-dong,YANG Xiao-peng,MEI Tao.Image search reranking with query-dependent click-based relevance feedback[J].IEEE Transactions on Image Processing,2014,23(10):4448-4459.
[15] WANG James Z,LI Jia,WIEDERHOLD Gio.SIMPLIcity:Semantics-sensitive integrated matching for picture libraries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(9):947-963.
[16] GRIFFIN G,HOLUB A,Perona P.Caltech-256 Object Category Dataset (Technology Report 7694)[R].California Institute of Technology,2007.
[17] AKSOY Selim,HARALICK Robert M.Feature normalization and likelihood-based similarity measures for image retrieval[J].Pattern recognition letters,2001,22(5):563-582.
[1]
孙辉, 邓志诚, 赵嘉, 王晖, 谢海华. 混合均值中心反向学习粒子群优化算法 [J]. 电子学报, 2019, 47(9): 1809-1818.
[2]
黄锦旺, 吕善翔, 李广明, 袁华强. 基于增殖系数的混沌信号提取算法 [J]. 电子学报, 2019, 47(4): 855-861.
[3]
张行, 常颖, 宋康, 李春国, 杨绿溪. 一种新颖的水声信道参数估计算法 [J]. 电子学报, 2019, 47(2): 509-512.
[4]
韩红桂, 武淑君. 基于收敛速度和多样性的多目标粒子群种群规模优化设计 [J]. 电子学报, 2018, 46(9): 2263-2269.
[5]
刘兆广, 纪秀花, 刘云霞. 一种快速收敛的非参数粒子群优化算法及其收敛性分析 [J]. 电子学报, 2018, 46(7): 1669-1674.
[6]
闫涛, 刘凤娴, 陈斌. 基于量子混沌粒子群优化算法的分数阶超混沌系统参数估计 [J]. 电子学报, 2018, 46(2): 333-340.
[7]
宋华军, 刘芬, 陈海华, 张鹤. 一种基于改进PSO的随机最大似然算法 [J]. 电子学报, 2017, 45(8): 1989-1994.
[8]
陈松乐, 孙正兴, 张岩, 李骞. 一种运动数据检索的相关反馈算法 [J]. 电子学报, 2016, 44(4): 868-872.
[9]
谢承旺, 邹秀芬, 夏学文, 王志杰. 一种多策略融合的多目标粒子群优化算法 [J]. 电子学报, 2015, 43(8): 1538-1544.
[10]
邵鹏, 吴志健, 周炫余, 邓长寿. 基于折射原理反向学习模型的改进粒子群算法 [J]. 电子学报, 2015, 43(11): 2137-2144.
[11]
陈荣元, 郑晨, 申立智, 李广琼, 谭利娜. 多源影像融合与分割的协同方法 [J]. 电子学报, 2015, 43(10): 1994-2000.
[12]
曾启明, 纪震, 李琰, 俞航. 基于ELM和MA的微型四频天线设计 [J]. 电子学报, 2014, 42(9): 1693-1698.
[13]
王令赛, 姜淑娟, 张艳梅, 于巧. 基于正交搜索的粒子群优化测试用例生成方法 [J]. 电子学报, 2014, 42(12): 2345-2351.
[14]
王停, 夏克文, 张文梅, 白建川. 基于改进QPSO算法的阵列天线方向图综合 [J]. 电子学报, 2013, 41(6): 1177-1182.
[15]
商雨青, 许伟, 顾幸生. 交叉前置式粒子群优化算法及其在催化裂化C3 含量软测量中的应用 [J]. 电子学报, 2012, 40(9): 1885-1888.