电子学报 ›› 2021, Vol. 49 ›› Issue (9): 1830-1839.DOI: 10.12263/DXZB.20200681
蒋万春, 廖凯琴
收稿日期:
2020-07-09
修回日期:
2020-11-18
出版日期:
2021-10-21
作者简介:
基金资助:
JIANG Wan‑chun, LIAO Kai‑qin
Received:
2020-07-09
Revised:
2020-11-18
Online:
2021-10-21
Published:
2021-09-25
Supported by:
摘要:
节能以太网是解决当前以太网中日益严峻的能耗问题的标准方案.在节能以太网中,节能策略及其参数配置决定了节能以太网设备进入和退出低功耗状态的时机,是影响数据帧延时和节能效果的关键.近年来,国内外开展了大量关于节能以太网的节能策略研究.本文综述了1/10Gbps和40/100Gbps节能以太网的节能策略.首先从策略设计和建模分析的角度总结了1/10Gbps节能以太网的节能策略相关研究.然后,详细描述了40/100Gbps节能以太网的主要节能策略及其核心设计思想.接着,对比和分析了各种节能策略在节能状态选择、节能时长以及状态转换周期上的优缺点.最后,指出了节能策略在网络流量分布、负载状态以及用户延时需求上所面临的机遇与挑战.
中图分类号:
蒋万春, 廖凯琴. 节能以太网的节能策略综述[J]. 电子学报, 2021, 49(9): 1830-1839.
Wan?chun JIANG, Kai?qin LIAO . Survey on the Strategies of Energy Efficient Ethernet[J]. Acta Electronica Sinica, 2021, 49(9): 1830-1839.
文献序号 | 年份 | 分析的节能策略 | 到达间隔 | 分析方法 | 主要分析目标 |
---|---|---|---|---|---|
[ | 2011 | 帧聚合 | 泊松分布 | M/M/1 | 能耗 |
[ | 2011 | 帧传输 | 泊松分布 | M/G/1 | 能耗 |
[ | 2013 | 帧聚合 | 泊松分布 | M/G/1 | 平均延时和能耗 |
[ | 2013 | 帧聚合 | 泊松分布 | M/G/1 | 延时约束下的能耗 |
[ | 2017 | 帧聚合 | 泊松分布 | M/G/1 | 计时器和计数器起作用的负载范围 |
[ | 2016 | 含双向链路的帧聚合 | 泊松分布 | M/G/1 | 双向EEE链路下的平均延时和能耗 |
[ | 2013 | 只含计时器的帧聚合 | 泊松分布 | M/G/1 | 延时分布(尾延时) |
[ | 2020 | 帧聚合 | 复合泊松分布 | M/M/1 | 能耗 |
[ | 2017 | 帧聚合(多端口) | 叠加的泊松分布 | 排队网络 | 网络中的延时分布 |
[ | 2012 | 帧聚合 | 随机 | GI/G/1 | 平均延时和能耗 |
[ | 2017 | FC-SSHI | 泊松分布 | M/G/1 | 能耗 |
[ | 2016 | Dual-Mode | 泊松分布 | M/G/1 | 能耗 |
[ | 2016 | Dual-Mode | 泊松分布 | M/G/1 | 平均延时 |
表1 节能以太网中节能策略的建模分析
文献序号 | 年份 | 分析的节能策略 | 到达间隔 | 分析方法 | 主要分析目标 |
---|---|---|---|---|---|
[ | 2011 | 帧聚合 | 泊松分布 | M/M/1 | 能耗 |
[ | 2011 | 帧传输 | 泊松分布 | M/G/1 | 能耗 |
[ | 2013 | 帧聚合 | 泊松分布 | M/G/1 | 平均延时和能耗 |
[ | 2013 | 帧聚合 | 泊松分布 | M/G/1 | 延时约束下的能耗 |
[ | 2017 | 帧聚合 | 泊松分布 | M/G/1 | 计时器和计数器起作用的负载范围 |
[ | 2016 | 含双向链路的帧聚合 | 泊松分布 | M/G/1 | 双向EEE链路下的平均延时和能耗 |
[ | 2013 | 只含计时器的帧聚合 | 泊松分布 | M/G/1 | 延时分布(尾延时) |
[ | 2020 | 帧聚合 | 复合泊松分布 | M/M/1 | 能耗 |
[ | 2017 | 帧聚合(多端口) | 叠加的泊松分布 | 排队网络 | 网络中的延时分布 |
[ | 2012 | 帧聚合 | 随机 | GI/G/1 | 平均延时和能耗 |
[ | 2017 | FC-SSHI | 泊松分布 | M/G/1 | 能耗 |
[ | 2016 | Dual-Mode | 泊松分布 | M/G/1 | 能耗 |
[ | 2016 | Dual-Mode | 泊松分布 | M/G/1 | 平均延时 |
策略 | 节能状态选择 | 节能状态下停留时长 | 状态转换周期 |
---|---|---|---|
帧传输 | LPI | [0, TF] | [Ttrans, TF+Ttrans+τ] |
帧聚合 | LPI | [0, TF] | [Ttrans, TF+Ttrans+τ] |
EEEP | LPI | [0, T] | [Ttrans, ∞] |
Dual‑Mode | 先进入快速唤醒再到深度睡眠 | [0, ∞] | [Ttrans, ∞] |
FC | 先进入快速唤醒再到深度睡眠 | [0, ∞] | [Ttrans, ∞] |
FC‑SSHI | 快速唤醒或深度睡眠 | [TF, TF+TD] | [Ttrans+TF, Ttrans+TF+TD] |
FC‑DT | 快速唤醒或深度睡眠 | CF溢出所需时长或[0, TD] | [Ttrans, ∞]或[Ttrans, Ttrans +TD] |
PS | 快速唤醒或深度睡眠 | [0, ETC] | 预测准确度越高越接近ETC |
表3 节能策略的对比和分析
策略 | 节能状态选择 | 节能状态下停留时长 | 状态转换周期 |
---|---|---|---|
帧传输 | LPI | [0, TF] | [Ttrans, TF+Ttrans+τ] |
帧聚合 | LPI | [0, TF] | [Ttrans, TF+Ttrans+τ] |
EEEP | LPI | [0, T] | [Ttrans, ∞] |
Dual‑Mode | 先进入快速唤醒再到深度睡眠 | [0, ∞] | [Ttrans, ∞] |
FC | 先进入快速唤醒再到深度睡眠 | [0, ∞] | [Ttrans, ∞] |
FC‑SSHI | 快速唤醒或深度睡眠 | [TF, TF+TD] | [Ttrans+TF, Ttrans+TF+TD] |
FC‑DT | 快速唤醒或深度睡眠 | CF溢出所需时长或[0, TD] | [Ttrans, ∞]或[Ttrans, Ttrans +TD] |
PS | 快速唤醒或深度睡眠 | [0, ETC] | 预测准确度越高越接近ETC |
1 | WINZERP. Beyond 100G ethernet [J]. IEEE Communications Magazine, 2010, 48(7):26 - 30. |
2 | IEEEP802.3ba. 40Gb/s and 100Gb/s Ethernet Task Force [EB/OL]. , 2010. |
3 | 张小丹,程丹,徐晶,等. 40G/100G以太网关键技术的研究与应用[J].光通信技术, 2011,35(4):1 - 4. |
ZHANGX D, CHENGD, XUJ, et al. The research and application of 40G/100G Ethernet key technology[J]. Optical Communication Technology, 2011, 35(4): 1 - 4.(in Chinese) | |
4 | TORRES‑FERRERAP, FERNÁNDEZ‑SEGURA O, GUTIERREZ‑CASTREJON R. Comparison of10x40Gbps and8x50Gbps WDM system for next‑generation ethernet operating at 400Gbps[A]. OSA Latin America Optics&Photonics Conference[C]. Cancun Mexico: OSA, 2014. |
5 | REVIRIEGOP, CHRISTENSENK, RABANILLO J, et al. An initial evaluation of energy efficient ethernet [J]. IEEE Communications Letters, 2011,15(5):578 - 580. |
6 | KOHLB. 10GBASE‑T Power Budget Summary [R]. Orlando, FL, USA: IEEE, 2007. |
7 | BENSONT, ANANDA, AKELLAA, et al. Understanding data center traffic characteristics [A].ACM Workshop on Research on Enterprise Networking[C]. Barcelona, Spain: ACM, 2009. |
8 | GUPTAM. A feasibility study for power management in LAN switches[A]. IEEE International Conference on Network Protocols[C]. California, USA: ACM, 2004. |
9 | NORDMANB. EEE Savings Estimates [EB/OL]. , 2007. |
10 | KHOURYJ EL, RONDEAUE, GEORGESJP, KOR AL. Assessing the Impact of EEE Standard on Energy Consumed by Commercial Grade Network Switches[M]. Nancy, France: Green IT Engineering, 2019. |
11 | CHRISTENSENK, REVIRIEGOP, NORDMANB, et al. IEEE 802.3az: the road to energy efficient ethernet [J]. IEEE Communications Magazine, 2010, 48(11): 50 - 56. |
12 | IEEE802.3az. Amendment 5: Media Access Control Parameters, Physical Layers, and Management Parameters for Energy‑Efficient Ethernet[M].New York, USA: IEEE, 2010. |
13 | IEEE802.3bj. Amendment 2: Physical Layer Specifications and Management Parameters for 100Gb/s Operation over Backplanes and Copper Cables[M].New York, USA: IEEE, 2014. |
14 | HOFFT. Latency is Everywhere and It Costs You Sales How to Crush It [EB/OL]. , 2019. |
15 | DEANJ, BARROSOL A. The tail at scale [J]. Communications of the ACM, 2013, 56(2): 74 - 80. |
16 | RUMBLES M, ONGAROD, STUTSMANR, et al. It's time for low latency[A]. Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems[C]. Berkeley, CA, USA: USENIX Association, 2011. 11 - 11. |
17 | WILSONC, BALLANIH, KARAGIANNIST, et al. Better never than late: meeting deadlines in datacenter networks[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(4):50 - 61. |
18 | ALIZADEHM, GREENBERGA, MALTZD A, et al. Data center TCP (DCTCP) [J]. ACM SIGCOMM Computer Communication Review, 2010, 40(4):63 - 74. |
19 | LIANGQ, MODIANOE H. Coflow scheduling in input-queued switches: optimal delay scaling and algorithms[A]. IEEE INFOCOM 2017—IEEE Conference on Computer Communications[C]. USA: IEEE, 2017. |
20 | REVIRIEGOP, HERNANDEZJ A, LARRABEITID, et al. Performance evaluation of energy efficient ethernet [J]. IEEE Communications Letters, 2009, 13(9):697 - 699. |
21 | REVIRIEGOP, HERNADEZJ A, LARRABEITID, et al. Burst transmission for energy efficient ethernet [J]. IEEE Internet Computing, 2010, 14(4): 50 - 57. |
22 | CENEDESEA, TRAMARINF, VITTURIS. An energy efficient ethernet strategy based on traffic prediction and shaping [J]. IEEE Transactions on Communications, 2017, 65(1): 270 - 282. |
23 | HERRERIA‑ALONSOS, RODRIGUEZ‑PEREZM, FERNANDEZ‑VEIGAM, et al. A power saving model for burst transmission in energy efficient ethernet [J]. IEEE Communications Letters, 2011, 15(5):584 - 586. |
24 | MARSANM A, ANTAA F, MANCUSOV, et al. A simple analytical model for energy efficient ethernet [J]. IEEE Communications Letters, 2011, 15(7):773 - 775. |
25 | MENGJ, RENF, JIANGW, et al. Modeling and understanding burst transmission algorithms for energy efficient ethernet[A]. IEEE/ACM 21st International Symposium on Quality of Service (IWQoS)[C]. Montreal, QC, Canada: IEEE, 2013. 1 - 10. |
26 | KIMK J, JINS, TIANN, et al. Mathematical analysis of burst transmission scheme for IEEE 802.3az energy efficient ethernet [J]. Performance Evaluation, 2013, 70(5): 350 - 363. |
27 | PANXIAODAN, YETONG, TLEETONY, et al. Power efficiency and delay tradeoff of 10GBase‑T energy efficient ethernet protocol [J]. IEEE/ACM Transactions on Networking, 2017,25(5):2773 - 2787. |
28 | CHATZIPAPASA, MANCUSOV. An M/G/1 model for gigabit energy efficient ethernet links with coalescing and real‑trace‑based evaluation[J]. IEEE/ACM Transactions on Networking, 2016, 24(5):2663 - 2675. |
29 | AKARN. Delay analysis of timer‑based frame coalescing in energy efficient ethernet[J]. IEEE Communications Letters, 2013, 17(7):1459 - 1462. |
30 | MAKSIN, BIELICAM. M/M/1 model of energy efficient ethernet with byte‑based coalescing[J]. Annals of Telecommunications, 2020, 75(7/8):291 - 305. |
31 | RODRIGUEZ‑PEREZM, HERRERIA‑ALONSOS, FERNANDEZ‑VEIGAM, et al. Delay properties of energy efficient ethernet networks[J]. IEEE Communications Letters, 2017, 21(10):2194 - 2197. |
32 | HERRERIA‑ALONSOS, RODRIGUEZ‑PEREZM, MFERNANDEZ‑VEIGA, et al. A GI/G/1 model for 10Gb/s energy efficient ethernet links[J]. IEEE Transactions on Communications, 2012, 60(11):3386 - 3395. |
33 | SARAVANANK P, CARPENTERP M, RAMIREZA, et al. Power/performance evaluation of energy efficient ethernet (EEE) for high performance computing [A]. IEEE International Symposium on Performance Analysis of Systems & Software[C]. USA: IEEE, 2013.205 - 214. |
34 | SILVAR F E, CARPENTERP M. Energy efficient ethernet on mapreduce clusters: packet coalescing to improve 10GbE links [J]. IEEE/ACM Transactions on Networking, 2017, 25(5): 2731 - 2742. |
35 | MOSTOWFIM. A simulation study of energy efficient ethernet with two modes of low‑power operation [J]. IEEE Communications Letters, 2015, 19 (10):1702 - 1705. |
36 | HERRERÍA‑ALONSOS, RODRÍGUEZ‑PÉREZM, FERNÁNDEZ‑VEIGAM, LÓPEZ‑GARCÍAC. Frame Coalescing in Dual‑mode EEE [EB/OL]. , 2015. |
37 | MOSTOWFIM, SHAFIEK. Dual‑mode energy efficient ethernet with packet coalescing: analysis and simulation [J]. Sustainable Computing Informatics & Systems, 2018, 18(Jun):149 - 162. |
38 | HERRERÍA‑ALONSOS, RODRÍGUEZ‑PÉREZM, FERNÁNDEZ‑VEIGAM, et al. Optimizing dual‑mode EEE interfaces: deep‑sleep is healthy [J]. IEEE Transactions on Communications, 2017, 65(8):3374 - 3385. |
39 | WANCHUNJIANG, KAIQINLIAO, YULONGYAN, JIANXINWANG. PS: periodic strategy for the 40-100Gbps energy efficient ethernet[A]. 49th International Conference on Parallel Processing‑ICPP[C]. New York, USA: ICPP, 2020. 1 - 10. |
40 | SHAFIEK, MOSTOWFIM. An analytical model for the power consumption of dual‑mode EEE [J]. Electronics Letters, 2016, 52(15):1308-1310. |
41 | MOSTOWFIM, SHAFIEK. Average packet delay in dual‑mode EEE: an analytical model [J]. Electronics Letters, 2016, 52(21): 1759 - 1761 |
42 | 张国强,林森,刘真,等.高能效互联网传输技术研究[J].通信学报, 2012, 33(05):158 - 168. |
ZHANGG Q, LINS, LIUZ, et al. Energy efficient data transmission on the Internet[J]. Journal on Communications, 2012, 33(5): 158 - 168.(in Chinese) | |
43 | 赵金洲,叶通,李东,等.节能EPON中一种新的ONU休眠策略[J].光通信技术, 2016, 40(005):8 - 10. |
ZHAOJ Z, YET, LID, et al. Novel sleep scheme for ONUs in energy efficient EPON[J]. Optical Communication Technology, 2016, 40(5): 8 - 10.(in Chinese) | |
44 | AKSICM, BJELICAM, Packet coalescing strategies for energy efficient ethernet[J]. Electronics Letters, 2014, 50(7):1759 - 1761. |
[1] | 皮德常, 吴致远, 曹建军. 基于知识图谱表示学习的谣言早期检测方法[J]. 电子学报, 2023, 51(2): 385-395. |
[2] | 金翊, 张红红, 陈迅雷, 王舒欣, 欧阳山, 沈云付, 江家宝. SD16的三值逻辑光学运算器理论和结构[J]. 电子学报, 2023, (): 1-9. |
[3] | 张宏科, 于成晓, 权伟, 张宇明. 融算网络体系基础研究[J]. 电子学报, 2022, 50(12): 2928-2934. |
[4] | 金明, 丁蓉. 一种联合时域和空域残差的网络异常检测与节点定位方法[J]. 电子学报, 2022, (): 1-8. |
[5] | 胡钢, 牛琼, 许丽鹏, 卢志宇, 过秀成. 基于网络超链接信息熵的节点重要性序结构演化建模分析[J]. 电子学报, 2022, 50(11): 2638-2644. |
[6] | 杨宏宇, 王泽霖, 张良, 成翔. 面向物联网的多协议僵尸网络检测方法[J]. 电子学报, 2022, (): 1-9. |
[7] | 孟超, 周倩, 郭林, 王攀, 孙知信. 基于相关性传输模型的无线链路质量估计方法及路由优化算法[J]. 电子学报, 2022, 50(10): 2409-2424. |
[8] | 蒋伟进, 张婉清, 陈萍萍, 陈君鹏, 孙永霞, 刘权. 基于IWOA群智感知中数量敏感的任务分配方法[J]. 电子学报, 2022, 50(10): 2489-2502. |
[9] | 杨明亮, 吴春明, 沈丛麒, 邱于兵. 基于IEEE 802.1的TSN交换机队列调度技术研究[J]. 电子学报, 2022, 50(9): 2090-2095. |
[10] | 熊小峰, 黄淳岚, 乐光学, 戴亚盛, 杨晓慧, 杨忠明. 边缘计算中基于综合信任评价的任务卸载策略[J]. 电子学报, 2022, 50(9): 2134-2145. |
[11] | 魏振春, 傅宇, 马仲军, 吕增威, 石雷, 张本宏. 带时间窗的无线可充电传感器网络多目标路径规划算法[J]. 电子学报, 2022, 50(8): 1819-1829. |
[12] | 赵耿, 马英杰, 陈磊, 董有恒, 侯艳丽. 基于扰动时空混沌系统的动态S盒设计[J]. 电子学报, 2022, 50(8): 2037-2042. |
[13] | 欧阳与点, 谢鲲, 谢高岗, 文吉刚. 面向大规模网络测量的数据恢复算法:基于关联学习的张量填充[J]. 电子学报, 2022, 50(7): 1653-1663. |
[14] | 陈嘉兴, 程杰, 董云玲, 刘志华. 基于弯曲声线和测距修正的水下节点定位算法[J]. 电子学报, 2022, 50(7): 1567-1572. |
[15] | 易令, 李泽平. 基于深度强化学习的码率自适应算法研究[J]. 电子学报, 2022, 50(5): 1192-1200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||