一种脉冲神经元监督学习的直接计算方法

陈国军, 蔺想红, 王国恩, 王向文

电子学报 ›› 2021, Vol. 49 ›› Issue (2) : 331-337.

PDF(1478 KB)
PDF(1478 KB)
电子学报 ›› 2021, Vol. 49 ›› Issue (2) : 331-337. DOI: 10.12263/DZXB.20190350
学术论文

一种脉冲神经元监督学习的直接计算方法

  • 陈国军1, 蔺想红2, 王国恩1, 王向文2
作者信息 +

A Direct Computation Method of Supervised Learning for Spiking Neurons

  • CHEN Guo-jun1, LIN Xiang-hong2, WANG Guo-en1, WANG Xiang-wen2
Author information +
文章历史 +

摘要

精确脉冲定时作为一种神经元信息编码方式更具生物可解释性,使用精确脉冲定时编码的脉冲神经元具有更为强大的时空信号处理能力.脉冲神经元监督学习是神经计算的重要方面,目的是使神经元对给定输入脉冲在期望时刻发放脉冲.通过分析输入脉冲序列、期望输出脉冲序列与实际输出脉冲序列的关系,发现已有脉冲神经元监督学习算法的脉冲选择与计算较为复杂,致使不能达到理想学习效果.通过去除影响整体学习效果的多余脉冲计算,构建用于脉冲神经元突触权值调整的双脉冲单元,提出了一种适用于脉冲神经元监督学习的直接计算方法.该方法基于输入脉冲,使用期望输出脉冲与实际输出脉冲的时序关系,直接计算突触权值的调整量;每个输入脉冲在每次迭代中最多计算一次,有效减少了脉冲计算次数.实验结果表明,直接计算方法作为脉冲神经元监督学习的一般性脉冲计算优化策略,可以大幅提高已有算法的学习准确率.

Abstract

The purpose of supervised learning for spiking neurons is to emit spikes at desired times. By analyzing the relationship between desired output spike train, actual output spike train, and input spike trains, we argue that the spike selection and calculation of existing algorithms are much complex. By removing the repetitive spike computations which have a negative effect on the overall learning performance, we construct a unit of pair-spike and propose a direct computation method of supervised learning algorithms for spiking neurons. Based on input spikes and the relationship between desired output spike train and actual output spike train, the proposed method utilities every useful input spike selected only once to directly adjust the synaptic weights, which truly reduces the computational cost. Experimental results show that the direct computation method, as a general optimization strategy of supervised learning for spiking neurons, can effectively improve the learning performance of existing algorithms.

关键词

监督学习 / 脉冲神经元 / 脉冲神经网络 / 脉冲序列 / 直接计算

Key words

supervised learning / spiking neuron / spiking neural networks / spike train / direct computation

引用本文

导出引用
陈国军, 蔺想红, 王国恩, 王向文. 一种脉冲神经元监督学习的直接计算方法[J]. 电子学报, 2021, 49(2): 331-337. https://doi.org/10.12263/DZXB.20190350
CHEN Guo-jun, LIN Xiang-hong, WANG Guo-en, WANG Xiang-wen. A Direct Computation Method of Supervised Learning for Spiking Neurons[J]. Acta Electronica Sinica, 2021, 49(2): 331-337. https://doi.org/10.12263/DZXB.20190350
中图分类号: TP183   

参考文献

[1] DENG L,WU Y,HU X,et al.Rethinking the performance comparison between SNNS and ANNS neural networks[J].Neural Networks,2020,121:294-307.
[2] BOHTE S M.The evidence for neural information processing with precise spike-times:a survey[J].Natural Computing,2004,3(2):195-206.
[3] BUTTSD A,WENG C,JIN J,et al.Temporal precision in the neural code and the timescales of natural vision[J].Nature,2007,449(7158):92-95.
[4] GERSTNER W,KISTLER W M,et al.Spiking Neuron Models:Single Neurons,Populations,Plasticity[M].Cambridge University Press,2002.
[5] GUTIG R.Spiking neurons can discover predictive features by aggregate-label learning[J].Science,2016,351(6277):4113-4113.
[6] MAASS W.Networks of spiking neurons:The third generation of neural network models[J].Neural Networks,1997,10(9):1659-1671.
[7] 蔺想红,王向文.脉冲神经网络原理及应用[M].北京:科学出版社,2018. LIN Xiang-hong,WANG Xiang-wen.Theory and Application of Spiking Neural Networks[M],Beijing:The Science Publishing Company,2018.(in Chinese)
[8] TAVANAEI A,BELATRECHE A,LI Y,et al.A review of learning in biologically plausible spiking neural networks[J].Neural Networks,2020,122:253-272.
[9] WANG X,LIN X,DANG X.Supervised learning in spiking neural networks:A review of algorithms and evaluations[J].Neural Networks,2020,125:258-280.
[10] KASABOV N,DOBORJEH M G,DOBORJEH Z G.Mapping,learning,visualization,classification,and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(4):887-899.
[11] MORRO A,et al.A stochastic spiking neural network for virtual screening[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(4):1371-1375.
[12] 蔺想红,王向文,张宁,等.脉冲神经网络的监督学习算法研究综述[J].电子学报,2015,43(3):577-586. LIN Xiang-hong,WANG Xiang-wen,ZHANG Ning,et al.Supervised learning algorithms for spiking neural networks:A review[J].Acta Electronica Sinica,2015,43(3):577-586.(in Chinese)
[13] BOHTE S M,KOK J N,POUTRÉ H L.Error-backpropagation in temporally encoded networks of spiking neurons[J].Neurocomputing,2002,48(1-4):17-37.
[14] GHOSH D S,ADELI H.A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection[J].Neural Networks,2009,22(10):1419-1431.
[15] XU Y,ZENG X,HAN L,et al.A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks[J].Neural Networks,2013,43:99-113.
[16] HEBB D O.The Organization of Behavior A Neuropsychological Theory[M].John Wiley,Chapman & Hall,2013.
[17] CAPORALE N,DAN Y.Spike timing-dependent plasticity:A Hebbian learning rule[J].Annual Review of Neuroscience,2008,31(1):25-46.
[18] WADE J J,MCDAID L J,SANTOS J A,et al.SWAT:A spiking neural network training algorithm for classification problems[J].IEEE Transactions on Neural Networks,2010,21(11):1817-1830.
[19] PONULAK F,KASIŃSKI A.Supervised learning in spiking neural networks with ReSuMe:Sequence learning,classification,and spike shifting[J].Neural Computation,2010,22(22):467-510.
[20] TAHERKHANI A,BELATRECHE A,et al.DL-ReSuMe:A delay learning-based remote supervised method for spiking neurons[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(12):3137-3149.
[21] LIN X,CHEN G,WANG X,et al.An improved supervised learning algorithm using triplet-based spike-timing-dependent plasticity[A].Proceedings of the 12th International Conference on Intelligent Computing[C].Cham,Switzerland:Springer International Publishing,2016.44-53.
[22] CARNELLA,RICHARDSON D.Linear algebra for times series of spikes[A].Proceedings of the 13th European Symposium on Artificial Neural Networks[C].Evere,Belgium:Dside,2005.363-368.
[23] MOHEMMED A,SCHLIEBS S,et al.Span:Spike pattern association neuron for learning spatio-temporal spike patterns[J].International Journal of Neural Systems,2012,22(4):786-803.
[24] YU Q,TANG H,et al.Precise-spike-driven synaptic plasticity:Learning hetero-association of spatiotemporal spike patterns[J].Plos One,2013,8(11):e78318.
[25] 蔺想红,王向文,党小超.基于脉冲序列核的脉冲神经元监督学习算法[J].电子学报,2016,44(12):2877-2886. LIN Xiang-hong,WANG Xiang-wen,DANG Xiao-chao.A new supervised learning algorithm for spiking neurons based on spike train kernels[J].Acta Electronica Sinica, 2016,44(12):2877-2886.(in Chinese)
[26] WANG X,LIN X,et al.Supervised learning algorithm using for spiking neurons based on nonlinear inner products of spike trains[A].Proceedings of the 12th International Conference on Intelligent Computing[C].Cham,Switzerland:Springer International Publishing,2016.95-104.
[27] LIN X,WANG X,HAO Z.Supervised learning in multilayer spiking neural networks with inner products of spike trains[J].Neurocomputing,2017,237:59-70.
[28] WANG X,LIN X,et al.A delay learning algorithm based on spike train kernels for spiking neurons[J].Frontiers in Neuroence,2010,252(13):1-16.
[29] XU Y,ZENG X,ZHONG S.A new supervised learning algorithm for spiking neurons[J].Neural Computation,2013,25(6):1472-1511.
[30] XIE X,QU H,YI Z,et al.Efficient training of supervised spiking neural network via accurate synaptic-efficiency adjustment method[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(6):1411-1424.
[31] ZHANG M,QU H,BELATRECHE A,et al.A highly effective and robust membrane potential-driven supervised learning method for spiking neurons[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(1):123-137.
[32] SCHREIBER S,FELLOUS J M,WHITMER D,et al.A new correlation-based measure of spike timing reliability[J].Neurocomputing,2003,52-54:925-931.

基金

国家自然科学基金 (No.51878516)
PDF(1478 KB)

1462

Accesses

0

Citation

Detail

 
段落导航
相关文章

/