1 |
王守觉. 仿生模式识别(拓扑模式识别): 一种模式识别新模型的理论与应用[J]. 电子学报, 2002, 30(10): 1417-1420.
|
|
Wang S J. Bionic (topological) pattern recognition—A new model of pattern recognition theory and its applications[J]. Acta Electronica Sinica, 2002, 30(10): 1417-1420. (in Chinese)
|
2 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
Zhou Z H. Machine Learning[M]. Beijing, China: Tsinghua University Press, 2016. (in Chinese)
|
3 |
Vapnik V N. The Nature of Statistical Learning Theory[M]. New York, NY, USA: Springer New York, 1995.
|
4 |
Tang F Z, Adam L, Si B L. Group feature selection with multiclass support vector machine[J]. Neurocomputing, 2018, 317(23): 42-49.
|
5 |
Tian Y J, Qi Z Q, Ju X C, et al. Nonparallel support vector machines for pattern classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1067-1079.
|
6 |
Ding L Z, Liao S Z. An approximate approach to automatic kernel selection[J]. IEEE Transactions on Cybernetics, 2017, 47(3): 554-565.
|
7 |
Cano A, Zafra A, Ventura S. Weighted data gravitation classification for standard and imbalanced data[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1672-1687.
|
8 |
Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
|
9 |
Xu Y T, Yang Z J, Pan X L. A novel twin support-vector machine with pinball loss[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2): 359-370.
|
10 |
Wu M R, Ye J P. A small sphere and large margin approach for novelty detection using training data with outliers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2088-2092.
|
11 |
Xu Y T, Liu C M. A rough margin-based one class support vector machine[J]. Neural Computing and Applications, 2013, 22(6): 1077-1084.
|
12 |
Chorowski J, Wang J, Zurada J M. Review and performance comparison of SVM- and ELM-based classifiers[J]. Neurocomputing, 2014, 128: 507-516.
|
13 |
Xu Y T, Yang Z J, Zhang Y Q, et al. A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification[J]. Knowledge-Based Systems, 2016, 95: 75-85.
|
14 |
Xu Y T. Maximum margin of twin spheres support vector machine for imbalanced data classification[J]. IEEE Transactions on Cybernetics, 2017, 47(6): 1540-1550.
|
15 |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
16 |
Shi C M, Panoutsos G, Luo B, et al. Using multiple-feature-spaces-based deep learning for tool condition monitoring in ultraprecision manufacturing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3794-3803.
|
17 |
Tsygvintsev A. On the overfly algorithm in deep learning of neural networks[J]. Applied Mathematics and Computation, 2019, 349: 348-358.
|
18 |
Alharbi A, Doncker E D. Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information[J]. Cognitive Systems Research, 2019, 54: 50-61.
|
19 |
Young T, Hazarika D, Poria S, et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55-75.
|
20 |
舒坚, 张学佩, 刘琳岚, 等. 基于深度卷积神经网络的多节点间链路预测方法[J]. 电子学报, 2018, 46(12): 2970-2977.
|
|
Shu J, Zhang X P, Liu L L, et al. Multi-nodes link prediction method based on deep convolution neural networks[J]. Acta Electronica Sinica, 2018, 46(12): 2970-2977. (in Chinese)
|