1 |
Basak A, Li S C, Hu X, et al. Analysis and optimization of the memory hierarchy for graph processing workloads[A]. 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)[C]. Washington, DC, USA: IEEE, 2019. 373-386.
|
2 |
Miller G L, Teng S H, Vavasis S A. A unified geometric approach to graph separators[A]. 1991 Proceedings 32nd Annual Symposium of Foundations of Computer Science[C]. San Juan, PR, USA: IEEE, 1991. 538-547.
|
3 |
Stanton I, Kliot G. Streaming graph partitioning for large distributed graphs[A]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 12[C]. New York, USA: ACM Press, 2012. 1222-1230.
|
4 |
Stanton I. Streaming balanced graph partitioning algorithms for random graphs[A]. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms[C]. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2014. 1287-1301.
|
5 |
Andreev K, Räcke H. Balanced graph partitioning[A]. Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures - SPAA04[C]. New York, USA: ACM Press, 2004: 120-124.
|
6 |
Liu N, Li D S, Zhang Y M, et al. Large-scale graph processing systems: A survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(3): 384-404.
|
7 |
Benlic U, Hao J K. An effective multilevel tabu search approach for balanced graph partitioning[J]. Computers & Operations Research, 2011, 38(7): 1066-1075.
|
8 |
Kokosiński Z, Bała M. Solving graph partitioning problems with parallel metaheuristics[A]. Recent Advances in Computational Optimization[C]. Cham, Germany: Springer, 2018. 89-105.
|
9 |
Awadelkarim A, Ugander J. Prioritized restreaming algorithms for balanced graph partitioning[A]. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C]. New York, NY, USA: ACM, 2020. 1877-1887.
|
10 |
Nishimura J, Ugander J. Restreaming graph partitioning: Simple versatile algorithms for advanced balancing[A]. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C]. New York, NY, USA: ACM, 2013. 1106-1114.
|
11 |
Srinuvasu M A. Analysis of large graph partitioning and frequent subgraph mining on graph data[J]. International Journal of Advanced Computer Research, 2015, 6(7): 12.
|
12 |
Moon B, Jagadish H V, Faloutsos C, et al. Analysis of the clustering properties of the Hilbert space-filling curve[J]. IEEE Transactions on Knowledge and Data Engineering, 2001, 13(1): 124-141.
|
13 |
Tsourakakis C, Gkantsidis C, Radunovic B, et al. FENNEL: streaming graph partitioning for massive scale graphs[A]. Proceedings of the 7th ACM International Conference on Web Search and Data Mining[C]. New York, NY, USA: ACM, 2014. 333-342.
|
14 |
Battaglino C, Pienta P, Vuduc R. GraSP: distributed streaming graph partitioning[A]. The 1st High Performance Graph Mining Workshop[C]. Arcelona, SPAIN: Barcelona Supercomputing Center, 2015. DOI:10.5821/hpgm15.3.
|
15 |
Martella C, Logothetis D, Loukas A, et al. Spinner: scalable graph partitioning in the cloud[EB/OL]. , 2019.
|
16 |
Pope A S, Tauritz D R, Kent A D. Evolving multi-level graph partitioning algorithms[A]. IEEE Symposium Series on Computational Intelligence (SSCI)[C]. Athens, Greece: IEEE, 2016. 1-8.
|
17 |
Tsourakakis C E, Kolountzakis M N, Miller G L. Approximate triangle counting[EB/OL]. , 2019.
|
18 |
Qian X H. Graph processing and machine learning architectures with emerging memory technologies: A survey[J]. Science China Information Sciences, 2021, 64(6): 1-25.
|
19 |
Borůvka, Otakar. O jistém problému minimálním[EB/OL]. , 2019.
|
20 |
Han M Y, Daudjee K, Ammar K, et al. An experimental comparison of pregel-like graph processing systems[J]. Proceedings of the VLDB Endowment, 2014, 7(12): 1047-1058.
|
21 |
Murtagh F, Contreras P. Algorithms for hierarchical clustering: An overview[J]. WIREs Data Mining and Knowledge Discovery, 2012, 2(1): 86-97.
|
22 |
Tang C F, Rao Y, Yu H L, et al. Improving knowledge graph completion using soft rules and adversarial learning[J]. Chinese Journal of Electronics, 2021, 30(4): 623-633.
|
23 |
Khayyat Z, Awara K, Alonazi A, et al. Mizan: A system for dynamic load balancing in large-scale graph processing[A]. Proceedings of the 8th ACM European Conference on Computer Systems - EuroSys 13[C]. New York, USA: ACM Press, 2013. 169-182.
|
24 |
Fiduccia C M, Mattheyses R M. A linear-time heuristic for improving network partitions[A]. 19th Design Automation Conference[C]. Las Vegas, NV, USA: IEEE, 1982. 175-181.
|