1 |
DodgeS, KaramL. Understanding how image quality affects deep neural networks[A]. 2016 Eighth International Conference on Quality of Multimedia Experience[C]. Lisbon, Portugal: IEEE, 2016. 1-6.
|
2 |
HeK M, ZhangX Y, RenS Q, et al. Deep residual learning for image recognition[A]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C]. Las Vegas, USA: IEEE, 2016. 770-778.
|
3 |
ChenJ W, ChenJ, ChaoH Y, et al. Image blind denoising with generative adversarial network based noise modeling[A]. 2018 IEEE Conference on Computer Vision and Pattern Recognition[C]. Salt Lake City, USA: IEEE, 2018. 3155-3164.
|
4 |
FoiA, KatkovnikV, EgiazarianK. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images[J]. IEEE Transactions on Image Processing, 2007, 16(5): 1395-1411.
|
5 |
YangJ H, FengR, DengW. A new algorithm of image denoising based on stationary wavelet multi-scale adaptive threshold[A]. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology[C]. Harbin, China: IEEE, 2011. 4550-4553.
|
6 |
YangJ, WrightJ, HuangT S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
|
7 |
WenB, RavishankarS, BreslerY. Structured overcomplete sparsifying transform learning with convergence guarantees and applications[J]. International Journal of Computer Vision, 2015, 114(2/3): 137-167.
|
8 |
BuadesA, CollB, MorelJ M. A non-local algorithm for image denoising[A]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)[C]. San Diego, USA: IEEE, 2005. 60-65.
|
9 |
FromentJ. Parameter-free fast pixelwise non-local means denoising[J]. Image Processing on Line, 2014, 4: 300-326.
|
10 |
FrosioI, KautzJ. Statistical nearest neighbors for image denoising[J]. IEEE Transactions on Image Processing, 2019, 28(2): 723-738.
|
11 |
WangS L, ZhangL, LiangY. Nonlocal spectral prior model for low-level vision[A]. Computer Vision - ACCV[M]. Berlin, Heidelberg, GER: Springer, 2013. 231-244.
|
12 |
GuS H, XieQ, MengD Y, et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International Journal of Computer Vision, 2017, 121(2): 183-208.
|
13 |
宋云, 李雪玉, 沈燕飞, 等. 基于非局部相似块低秩的压缩感知图像重建算法[J]. 电子学报, 2017, 45(3): 695-703.
|
|
SongY, LiX Y, ShenY F, et al. Compressed sensing image reconstruction based on low rank of non-local similar patches[J]. Acta Electronica Sinica, 2017, 45(3): 695-703. (in Chinese)
|
14 |
ZhaZ Y, YuanX, WenB H, et al. From rank estimation to rank approximation: Rank residual constraint for image restoration[J]. IEEE Transactions on Image Processing, 2020, 29: 3254-3269.
|
15 |
WenB H, LiY J, BreslerY. Image recovery via transform learning and low-rank modeling: The power of complementary regularizers[J]. IEEE Transactions on Image Processing, 2020, 29: 5310-5323.
|
16 |
DabovK, FoiA, KatkovnikV, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
|
17 |
DjurovićI. BM3D filter in salt-and-pepper noise removal[J]. EURASIP Journal on Image and Video Processing, 2016, 10(1): 1-11.
|
18 |
LiY J, ZhangJ W, WangM N. Improved BM3D denoising method[J]. IET Image Processing, 2017, 11(12): 1197-1204.
|
19 |
YangJ Y, ZhangX, YueH J, et al. IBM3D: Integer BM3D for efficient image denoising[J]. Circuits, Systems, and Signal Processing, 2019, 38(2): 750-763.
|
20 |
ZhaZ Y, YuanX, ZhouJ T, et al. Image restoration via simultaneous nonlocal self-similarity priors[J]. IEEE Transactions on Image Processing, 2020, 29: 8561-8576.
|
21 |
ZhaZ Y, YuanX, WenB H, et al. Group sparsity residual constraint with non-local priors for image restoration[J]. IEEE Transactions on Image Processing, 2020, 29: 8960-8975.
|
22 |
BuadesA, LisaniJ L. Enhancement of noisy and compressed videos by optical flow and non-local denoising[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7): 1960-1974.
|
23 |
LiuC, FreemanW T. A high-quality video denoising algorithm based on reliable motion estimation[A]. European Conference on Computer Vision[C]. Berlin, Germany: Springer, 2010. 706-719.
|
24 |
WenB H, LiY J, PfisterL, et al. Joint adaptive sparsity and low-rankness on the fly: An online tensor reconstruction scheme for video denoising[A]. 2017 IEEE International Conference on Computer Vision[C]. Venice, Italy: IEEE, 2017. 241-250.
|
25 |
DabovK, FoiA, EgiazarianK. Video denoising by sparse 3D transform-domain collaborative filtering[A]. 2007 15th European Signal Processing Conference[C]. Poznań, Poland: IEEE, 2010. 145-149.
|
26 |
肖进胜, 姜红, 彭红, 等. 一种改进的3维块匹配视频去噪算法[J]. 四川大学学报(工程科学版), 2014, 46(4): 81-86.
|
|
XiaoJ S, JiangH, PengH, et al. An improved video denoising algorithm based on 3D block matching[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(4): 81-86. (in Chinese)
|
27 |
MaggioniM, BoracchiG, FoiA, et al. Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms[J]. IEEE Transactions on Image Processing, 2012, 21(9): 3952-3966.
|
28 |
MaggioniM, Sánchez-MongeE, FoiA. Joint removal of random and fixed-pattern noise through spatiotemporal video filtering[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4282-4296.
|
29 |
邢远秀. 矿山井筒视觉监测与故障智能识别系统设计[J]. 金属矿山, 2013, (9): 138-141.
|
|
XingY X. Design of the vision monitoring and fault intelligent recognition system for security of mineshaft[J]. Metal Mine, 2013, (9): 138-141. (in Chinese)
|