电子学报 ›› 2021, Vol. 49 ›› Issue (10): 1993-2001.DOI: 10.12263/DZXB.20200033
黎毅达1,2, 高发荣1, 姚婷1, 蔡利杰1
收稿日期:
2019-12-25
修回日期:
2020-12-17
出版日期:
2021-11-29
作者简介:
基金资助:
LI Yi-da1,2, GAO Fa-rong1, YAO Ting1, CAI Li-jie1
Received:
2019-12-25
Revised:
2020-12-17
Online:
2021-11-29
Published:
2021-10-25
Supported by:
摘要:
为提高下肢表面肌电信号步态识别的识别精度和计算效率,采用一种基于高斯核函数优化正则化超限学习机(GKF-RELM)算法,对肌电信号提取时域、频域和非线性动力学三类特征并分别计算步态识别率,运用Fisher判别函数分析所提特征的可分性,得到多类特征的融合特征作为输入数据对分类器进行训练,再用训练好的分类器进行步态识别,从识别率和计算时间两方面,分别与支持向量机(SVM)和深度神经网络(DNN)方法进行了对比分析.结果表明,基于Fisher判别可分性指标确定的多类特征组合,能得到最优识别效果,并在提高分类精度的同时,优化了计算效率.此外,GKF-RELM方法的识别率也优于传统的ELM方法.
中图分类号:
黎毅达, 高发荣, 姚婷, 蔡利杰. 基于Fisher判别和GKF-RELM算法的多特征步态模式识别[J]. 电子学报, 2021, 49(10): 1993-2001.
LI Yi-da, GAO Fa-rong, YAO Ting, CAI Li-jie. Multi-Feature Gait Pattern Recognition Based on Fisher Discriminant and GKF-RELM Algorithm[J]. Acta Electronica Sinica, 2021, 49(10): 1993-2001.
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
Z1 | ELM | 97.22 | 91.67 | 85.60 | 86.11 | 79.63 | 88.05 |
GKF-RELM | 94.44 | 93.06 | 88.02 | 85.19 | 87.96 | 89.73 | |
Z2 | ELM | 97.25 | 90.97 | 82.40 | 88.89 | 77.78 | 87.46 |
GKF-RELM | 97.22 | 94.44 | 90.40 | 96.30 | 87.04 | 93.08 | |
Z3 | ELM | 97.22 | 87.50 | 90.40 | 87.96 | 80.56 | 88.73 |
GKF-RELM | 97.22 | 92.36 | 89.60 | 91.67 | 93.52 | 92.87 | |
Z4 | ELM | 93.06 | 95.31 | 86.40 | 98.15 | 84.03 | 91.39 |
GKF-RELM | 94.44 | 92.36 | 95.20 | 97.22 | 93.52 | 94.55 | |
Z5 | ELM | 94.97 | 95.51 | 95.50 | 96.24 | 96.59 | 95.76 |
GKF-RELM | 97.22 | 99.31 | 96.80 | 99.07 | 96.30 | 97.74 |
表1 时域特征识别率/%
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
Z1 | ELM | 97.22 | 91.67 | 85.60 | 86.11 | 79.63 | 88.05 |
GKF-RELM | 94.44 | 93.06 | 88.02 | 85.19 | 87.96 | 89.73 | |
Z2 | ELM | 97.25 | 90.97 | 82.40 | 88.89 | 77.78 | 87.46 |
GKF-RELM | 97.22 | 94.44 | 90.40 | 96.30 | 87.04 | 93.08 | |
Z3 | ELM | 97.22 | 87.50 | 90.40 | 87.96 | 80.56 | 88.73 |
GKF-RELM | 97.22 | 92.36 | 89.60 | 91.67 | 93.52 | 92.87 | |
Z4 | ELM | 93.06 | 95.31 | 86.40 | 98.15 | 84.03 | 91.39 |
GKF-RELM | 94.44 | 92.36 | 95.20 | 97.22 | 93.52 | 94.55 | |
Z5 | ELM | 94.97 | 95.51 | 95.50 | 96.24 | 96.59 | 95.76 |
GKF-RELM | 97.22 | 99.31 | 96.80 | 99.07 | 96.30 | 97.74 |
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
MPF | ELM | 95.14 | 96.53 | 94.40 | 95.20 | 94.44 | 95.14 |
GKF-RELM | 97.22 | 95.14 | 96.80 | 99.08 | 96.30 | 96.91 | |
MF | ELM | 97.22 | 83.33 | 84.00 | 77.78 | 65.74 | 81.61 |
GKF-RELM | 94.44 | 84.03 | 93.60 | 89.81 | 79.63 | 88.30 | |
MPF+MF | ELM | 94.44 | 96.53 | 97.60 | 96.80 | 96.30 | 96.33 |
GKF-RELM | 97.22 | 99.30 | 96.80 | 99.07 | 98.15 | 98.11 |
表2 频域特征识别率/%
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
MPF | ELM | 95.14 | 96.53 | 94.40 | 95.20 | 94.44 | 95.14 |
GKF-RELM | 97.22 | 95.14 | 96.80 | 99.08 | 96.30 | 96.91 | |
MF | ELM | 97.22 | 83.33 | 84.00 | 77.78 | 65.74 | 81.61 |
GKF-RELM | 94.44 | 84.03 | 93.60 | 89.81 | 79.63 | 88.30 | |
MPF+MF | ELM | 94.44 | 96.53 | 97.60 | 96.80 | 96.30 | 96.33 |
GKF-RELM | 97.22 | 99.30 | 96.80 | 99.07 | 98.15 | 98.11 |
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
SE | ELM | 86.82 | 83.20 | 79.24 | 85.14 | 83.96 | 83.67 |
GKF-RELM | 87.45 | 87.64 | 86.85 | 90.72 | 89.45 | 88.42 | |
FE | ELM | 91.67 | 75.69 | 90.40 | 98.15 | 77.78 | 86.74 |
GKF-RELM | 94.44 | 81.94 | 93.60 | 95.37 | 89.81 | 91.03 | |
PE | ELM | 85.47 | 80.56 | 80.25 | 88.14 | 83.13 | 83.51 |
GKF-RELM | 88.60 | 81.84 | 82.61 | 90.51 | 86.15 | 85.94 | |
SE+FE | ELM | 94.44 | 85.42 | 96.00 | 93.52 | 89.81 | 91.84 |
GKF-RELM | 95.83 | 89.06 | 95.81 | 95.14 | 93.06 | 93.78 | |
SE+PE | ELM | 86.23 | 89.22 | 85.42 | 82.64 | 90.47 | 86.80 |
GKF-RELM | 92.61 | 90.28 | 93.48 | 92.87 | 94.14 | 92.68 | |
FE+PE | ELM | 91.67 | 77.78 | 84.80 | 93.52 | 87.96 | 87.15 |
GKF-RELM | 91.67 | 86.46 | 87.43 | 97.22 | 92.36 | 91.03 | |
SE+FE+PE | ELM | 94.44 | 83.33 | 97.60 | 93.52 | 92.59 | 92.30 |
GKF-RELM | 97.92 | 83.85 | 97.01 | 95.83 | 93.75 | 93.67 |
表3 非线性动力学特征识别率/%
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
SE | ELM | 86.82 | 83.20 | 79.24 | 85.14 | 83.96 | 83.67 |
GKF-RELM | 87.45 | 87.64 | 86.85 | 90.72 | 89.45 | 88.42 | |
FE | ELM | 91.67 | 75.69 | 90.40 | 98.15 | 77.78 | 86.74 |
GKF-RELM | 94.44 | 81.94 | 93.60 | 95.37 | 89.81 | 91.03 | |
PE | ELM | 85.47 | 80.56 | 80.25 | 88.14 | 83.13 | 83.51 |
GKF-RELM | 88.60 | 81.84 | 82.61 | 90.51 | 86.15 | 85.94 | |
SE+FE | ELM | 94.44 | 85.42 | 96.00 | 93.52 | 89.81 | 91.84 |
GKF-RELM | 95.83 | 89.06 | 95.81 | 95.14 | 93.06 | 93.78 | |
SE+PE | ELM | 86.23 | 89.22 | 85.42 | 82.64 | 90.47 | 86.80 |
GKF-RELM | 92.61 | 90.28 | 93.48 | 92.87 | 94.14 | 92.68 | |
FE+PE | ELM | 91.67 | 77.78 | 84.80 | 93.52 | 87.96 | 87.15 |
GKF-RELM | 91.67 | 86.46 | 87.43 | 97.22 | 92.36 | 91.03 | |
SE+FE+PE | ELM | 94.44 | 83.33 | 97.60 | 93.52 | 92.59 | 92.30 |
GKF-RELM | 97.92 | 83.85 | 97.01 | 95.83 | 93.75 | 93.67 |
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
A1 | ELM | 95.37 | 96.45 | 94.57 | 98.01 | 94.64 | 95.81 |
GKF-RELM | 95.83 | 96.35 | 95.81 | 98.80 | 95.14 | 96.39 | |
SVM | 94.38 | 93.16 | 94.69 | 98.96 | 96.82 | 95.60 | |
DNN | 98.76 | 89.85 | 93.41 | 98.50 | 94.18 | 94.94 | |
A2 | ELM | 94.25 | 97.47 | 95.51 | 98.03 | 95.17 | 96.09 |
GKF-RELM | 95.83 | 97.40 | 97.60 | 98.56 | 96.53 | 97.18 | |
SVM | 94.29 | 96.36 | 96.24 | 98.10 | 96.16 | 96.23 | |
DNN | 99.00 | 91.35 | 94.16 | 97.68 | 94.72 | 95.38 | |
A3 | ELM | 95.20 | 97.27 | 95.17 | 98.30 | 95.75 | 96.34 |
GKF-RELM | 97.92 | 97.92 | 96.41 | 98.20 | 98.61 | 97.81 | |
SVM | 95.51 | 96.62 | 94.22 | 97.26 | 98.31 | 96.38 | |
DNN | 99.64 | 91.74 | 94.25 | 97.90 | 94.81 | 95.67 | |
A4 | ELM | 95.80 | 98.53 | 95.40 | 97.97 | 96.73 | 96.89 |
GKF-RELM | 97.92 | 98.96 | 96.41 | 97.01 | 98.61 | 97.78 | |
SVM | 97.65 | 94.29 | 94.18 | 98.19 | 98.38 | 96.53 | |
DNN | 99.67 | 92.28 | 94.33 | 98.10 | 95.27 | 95.93 | |
A5 | ELM | 97.22 | 98.50 | 97.30 | 98.43 | 96.60 | 97.61 |
GKF-RELM | 97.92 | 98.44 | 99.40 | 99.31 | 97.92 | 98.60 | |
SVM | 98.55 | 93.24 | 96.87 | 99.68 | 98.78 | 97.42 | |
DNN | 99.15 | 94.79 | 94.75 | 99.30 | 94.91 | 96.58 | |
A6 | ELM | 96.30 | 98.27 | 95.83 | 98.26 | 96.10 | 96.95 |
GKF-RELM | 97.92 | 98.44 | 96.41 | 99.30 | 97.22 | 97.86 | |
SVM | 97.26 | 92.56 | 96.37 | 99.60 | 97.31 | 96.62 | |
DNN | 99.00 | 93.85 | 95.17 | 99.34 | 95.68 | 96.61 | |
A7 | ELM | 94.48 | 97.81 | 96.57 | 97.89 | 94.82 | 96.31 |
GKF-RELM | 95.83 | 96.88 | 98.20 | 96.41 | 96.53 | 96.77 | |
SVM | 96.38 | 92.56 | 95.29 | 99.38 | 96.15 | 95.96 | |
DNN | 99.27 | 94.86 | 95.89 | 99.21 | 95.73 | 96.99 | |
A8 | ELM | 93.37 | 94.86 | 95.57 | 97.33 | 94.71 | 95.17 |
GKF-RELM | 93.75 | 94.79 | 97.60 | 97.30 | 94.44 | 95.58 | |
SVM | 94.26 | 92.86 | 94.37 | 98.61 | 95.19 | 95.06 | |
DNN | 99.48 | 95.74 | 96.28 | 99.46 | 97.16 | 97.62 |
表4 多特征融合识别率/%
组别 | 支撑前期 | 支撑中期 | 支撑后期 | 摆动前期 | 摆动后期 | 平均识别率 | |
---|---|---|---|---|---|---|---|
A1 | ELM | 95.37 | 96.45 | 94.57 | 98.01 | 94.64 | 95.81 |
GKF-RELM | 95.83 | 96.35 | 95.81 | 98.80 | 95.14 | 96.39 | |
SVM | 94.38 | 93.16 | 94.69 | 98.96 | 96.82 | 95.60 | |
DNN | 98.76 | 89.85 | 93.41 | 98.50 | 94.18 | 94.94 | |
A2 | ELM | 94.25 | 97.47 | 95.51 | 98.03 | 95.17 | 96.09 |
GKF-RELM | 95.83 | 97.40 | 97.60 | 98.56 | 96.53 | 97.18 | |
SVM | 94.29 | 96.36 | 96.24 | 98.10 | 96.16 | 96.23 | |
DNN | 99.00 | 91.35 | 94.16 | 97.68 | 94.72 | 95.38 | |
A3 | ELM | 95.20 | 97.27 | 95.17 | 98.30 | 95.75 | 96.34 |
GKF-RELM | 97.92 | 97.92 | 96.41 | 98.20 | 98.61 | 97.81 | |
SVM | 95.51 | 96.62 | 94.22 | 97.26 | 98.31 | 96.38 | |
DNN | 99.64 | 91.74 | 94.25 | 97.90 | 94.81 | 95.67 | |
A4 | ELM | 95.80 | 98.53 | 95.40 | 97.97 | 96.73 | 96.89 |
GKF-RELM | 97.92 | 98.96 | 96.41 | 97.01 | 98.61 | 97.78 | |
SVM | 97.65 | 94.29 | 94.18 | 98.19 | 98.38 | 96.53 | |
DNN | 99.67 | 92.28 | 94.33 | 98.10 | 95.27 | 95.93 | |
A5 | ELM | 97.22 | 98.50 | 97.30 | 98.43 | 96.60 | 97.61 |
GKF-RELM | 97.92 | 98.44 | 99.40 | 99.31 | 97.92 | 98.60 | |
SVM | 98.55 | 93.24 | 96.87 | 99.68 | 98.78 | 97.42 | |
DNN | 99.15 | 94.79 | 94.75 | 99.30 | 94.91 | 96.58 | |
A6 | ELM | 96.30 | 98.27 | 95.83 | 98.26 | 96.10 | 96.95 |
GKF-RELM | 97.92 | 98.44 | 96.41 | 99.30 | 97.22 | 97.86 | |
SVM | 97.26 | 92.56 | 96.37 | 99.60 | 97.31 | 96.62 | |
DNN | 99.00 | 93.85 | 95.17 | 99.34 | 95.68 | 96.61 | |
A7 | ELM | 94.48 | 97.81 | 96.57 | 97.89 | 94.82 | 96.31 |
GKF-RELM | 95.83 | 96.88 | 98.20 | 96.41 | 96.53 | 96.77 | |
SVM | 96.38 | 92.56 | 95.29 | 99.38 | 96.15 | 95.96 | |
DNN | 99.27 | 94.86 | 95.89 | 99.21 | 95.73 | 96.99 | |
A8 | ELM | 93.37 | 94.86 | 95.57 | 97.33 | 94.71 | 95.17 |
GKF-RELM | 93.75 | 94.79 | 97.60 | 97.30 | 94.44 | 95.58 | |
SVM | 94.26 | 92.86 | 94.37 | 98.61 | 95.19 | 95.06 | |
DNN | 99.48 | 95.74 | 96.28 | 99.46 | 97.16 | 97.62 |
分类器 | SVM | ELM | GKF-RELM | DNN |
---|---|---|---|---|
时间 | 3.02s | 0.97s | 1.30s | 8.60min |
表5 4种分类器的平均计算时间
分类器 | SVM | ELM | GKF-RELM | DNN |
---|---|---|---|---|
时间 | 3.02s | 0.97s | 1.30s | 8.60min |
1 | MeiC, GaoF R, LiY. A determination method for gait event based on acceleration sensors[J]. Sensors, 2019, 19(24): 5499. |
2 | 石鹏, 张启忠, 张华平, 等. 基于多元经验模态分解的多元多尺度熵静态平衡能力评估[J]. 电子学报, 2020, 48(4): 670-674. |
ShiP, ZhangQ Z, ZhangH P, et al. Static balance capability assessment of multivariate multiscale entropy based on multivariate empirical mode decomposition[J]. Acta Electronica Sinica, 2020, 48(4): 670-674. (in Chinese) | |
3 | RyuJ, LeeB H, KimD H. sEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm[J]. IEEE Signal Processing Letters, 2017, 24(7): 929-932. |
4 | ConnorP, RossA. Biometric recognition by gait: A survey of modalities and features[J]. Computer Vision and Image Understanding, 2018, 167: 1-27. |
5 | ZhangX F, SunS Q, LiC, et al. Impact of load variation on the accuracy of gait recognition from surface EMG signals[J]. Applied Sciences, 2018, 8(9): 1462-1476. |
6 | PhinyomarkA, PhukpattaranontP, LimsakulC. Feature reduction and selection for EMG signal classification[J]. Expert Systems With Applications, 2012, 39(8): 7420-7431. |
7 | 牟永阁, 彭承琳, 郑小林, 等. 肌肉动态收缩期间表面肌电信号的时频分析[J]. 生物物理学报, 2004, 20(4): 323-328. |
MuY G, PengC L, ZhengX L, et al. Time-frequency analysis of surface myoelectric signals during dynamic contractions[J]. Acta Biophysica Sinica, 2004, 20(4): 323-328. (in Chinese) | |
8 | TooJ, AbdullahA R, ZawawiT N, et al. Classification of EMG signal based on time domain and frequency domain features[J]. International Journal of Human and Technology Interaction, 2017, 1(1): 25-29. |
9 | 谢平, 魏秀利, 杜义浩, 等. 基于自排序熵的表面肌电信号特征提取方法[J]. 模式识别与人工智能, 2014, 27(6): 496-501. |
XieP, WeiX L, DuY H, et al. Feature extraction method of sEMG based on auto permutation entropy[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(6): 496-501. (in Chinese) | |
10 | 成娟, 陈勋, 彭虎. 基于样本熵的肌电信号起始点检测研究[J]. 电子学报, 2016, 44(2): 479-484. |
ChengJ, ChenX, PengH. An onset detection method for action surface electromyography based on sample entropy[J]. Acta Electronica Sinica, 2016, 44(2): 479-484. (in Chinese) | |
11 | 罗志增, 王人成. 基于表面肌电信号的前臂手部多运动模式识别[J]. 仪器仪表学报, 2006, 27(9): 996-999. |
LuoZ Z, WangR C. Hand movement pattern recognition based on surface electromyography[J]. Chinese Journal of Scientific Instrument, 2006, 27(9): 996-999. (in Chinese) | |
12 | BoydJ E, LittleJ J. Biometric gait recognition[A]. Advanced Studies in Biometrics[M]. Berlin, Heidelberg, GER: Springer Berlin Heidelberg, 2005. 19-42. |
13 | 丁帅, 王亮. 基于块稀疏贝叶斯学习的肌电信号特征提取[J]. 仪器仪表学报, 2014, 35(12): 2731-2738. |
DingS, WangL. Feature extraction of surface electromyography based on block sparse Bayesian learning[J]. Chinese Journal of Scientific Instrument, 2014, 35(12): 2731-2738. (in Chinese) | |
14 | 蔡竞, 王万良, 郑建炜, 等. 基于Fisher判别分析的增量式非负矩阵分解算法[J]. 模式识别与人工智能, 2018, 31(6): 505-515. |
CaiJ, WangW L, ZhengJ W, et al. Incremental non-negative matrix factorization based on fisher discriminant analysis[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(6): 505-515. (in Chinese) | |
15 | XiX G, TangM Y, MiranS M, et al. Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors[J]. Sensors, 2017, 17(6): 1229-1249. |
16 | 伏云发, 徐保磊, 李永程, 等. 基于运动相关皮层电位握力运动模式识别研究[J]. 自动化学报, 2014, 40(6): 1045-1057. |
FuY F, XuB L, LiY C, et al. Recognition of actual grip force movement modes based on movement-related cortical potentials[J]. Acta Automatica Sinica, 2014, 40(6): 1045-1057. (in Chinese) | |
17 | 何国辉, 甘俊英, 李春芝, 等. 人脸与虹膜特征层融合模型的研究[J]. 电子学报, 2007, 35(7): 1365-1371. |
HeG H, GanJ Y, LiC Z, et al. A model study for face and iris feature fusion and recognition[J]. Acta Electronica Sinica, 2007, 35(7): 1365-1371. (in Chinese) | |
18 | 贲晛烨, 徐森, 王科俊. 行人步态的特征表达及识别综述[J]. 模式识别与人工智能, 2012, 25(1): 71-81. |
BenX Y, XuS, WangK J. Review on pedestrian gait feature expression and recognition[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1): 71-81. (in Chinese) | |
19 | 席旭刚, 汤敏彦, 张自豪, 等. 融合表面肌电和加速度信号的下肢运动模式识别研究[J]. 电子学报, 2017, 45(11): 2735-2741. |
XiX G, TangM Y, ZhangZ H, et al. Lower limb motion recognition based on the fusion of sEMG and acceleration signal[J]. Acta Electronica Sinica, 2017, 45(11): 2735-2741. (in Chinese) | |
20 | 王佳佳, 高发荣, 孙曜, 等. 基于sEMG的行走步态非均匀特性及其对识别的影响[J]. 传感技术学报, 2016, 29(3): 384-389. |
WangJ J, GaoF R, SunY, et al. Non-uniform characteristics and its recognition effects for walking gait based on sEMG[J]. Chinese Journal of Sensors and Actuators, 2016, 29(3): 384-389. (in Chinese) | |
21 | LeCunY, BengioY, HintonG. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
22 | GharehbaghiA, LindénM. A deep machine learning method for classifying cyclic time series of biological signals using time-growing neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 4102-4115. |
23 | DuanN, LiuL Z, YuX J, et al. Classification of multichannel surface-electromyography signals based on convolutional neural networks[J]. Journal of Industrial Information Integration, 2019, 15: 201-206. |
24 | SuriK, GuptaR. Transfer learning for sEMG-based hand gesture classification using deep learning in a master- slave architecture[A]. The 3rd International Conference on Contemporary Computing and Informatics (IC3I)[C]. Delhi, India: IEEE, 2018. 178-183. |
25 | MukhopadhyayA K, SamuiS. An experimental study on upper limb position invariant EMG signal classification based on deep neural network[J]. Biomedical Signal Processing and Control, 2020, 55: 101669. |
26 | HuangG B, ZhuQ Y, SiewC K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. |
27 | KuangY X, WuQ, ShaoJ K, et al. Extreme learning machine classification method for lower limb movement recognition[J]. Cluster Computing, 2017, 20(4): 3051-3059. |
28 | 曹祥红, 刘磊, 杨鹏, 等. 利用多源信息和极限学习机的人体运动意图识别[J]. 传感技术学报, 2017, 30(8): 1171-1177. |
CaoX H, LiuL, YangP, et al. The research of locomotion-mode recognition based on multi-source information and extreme learning machine[J]. Chinese Journal of Sensors and Actuators, 2017, 30(8): 1171-1177. (in Chinese) | |
29 | YangY M, WangY N, YuanX F. Bidirectional extreme learning machine for regression problem and its learning effectiveness[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1498-1505. |
30 | HuangG B, SiewC K. Extreme learning machine: RBF network case[A]. ICARCV 2004 8th Control, Automation, Robotics and Vision Conference[C]. Kunming, China: IEEE, 2004. 1029-1036. |
31 | HuangG B, ZhouH M, DingX J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2012, 42(2): 513-529. |
32 | DuttaS, SinghM, KumarA. Automated classification of non-motor mental task in electroencephalogram based brain-computer interface using multivariate autoregressive model in the intrinsic mode function domain[J]. Biomedical Signal Processing and Control, 2018, 43: 174-182. |
33 | KrizhevskyA, SutskeverI, HintonG E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
34 | SzegedyC, LiuW, JiaY Q, et al. Going deeper with convolutions[A]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C]. Boston, MA, USA: IEEE, 2015. 1-9. |
[1] | 周奕涛, 张斌, 刘自豪. 基于多模态深度神经网络的应用层DDoS攻击检测模型[J]. 电子学报, 2022, 50(2): 508-512. |
[2] | 陈星宇, 叶锋, 黄添强, 翁彬, 陈家祯, 林文忠. 融合小型深度生成模型的显著性检测[J]. 电子学报, 2021, 49(4): 768-774. |
[3] | 崔子豪, 鲍长春. 基于广义合成分析和深度神经网络的自回归系数估计方法[J]. 电子学报, 2021, 49(1): 29-39. |
[4] | 袁文浩, 胡少东, 时云龙, 李钊, 梁春燕. 一种用于语音增强的卷积门控循环网络[J]. 电子学报, 2020, 48(7): 1276-1283. |
[5] | 张嘉纹, 党小宇, 杨凌辉, 齐茹梦, 王萌. 海面短波地波通信中基于DNN神经网络的单样本极化滤波器预测研究[J]. 电子学报, 2020, 48(11): 2250-2257. |
[6] | 袁文浩, 娄迎曦, 梁春燕, 夏斌. 利用生成噪声提高语音增强方法的泛化能力[J]. 电子学报, 2019, 47(4): 791-797. |
[7] | 徐少平, 李崇禧, 林官喜, 唐祎玲, 胡凌燕. 基于主成分分析与深度神经网络的快速噪声水平估计算法[J]. 电子学报, 2019, 47(2): 274-281. |
[8] | 刘颖, 胡丹, 范九伦, 王富平, 李大湘. 基于融合特征的现勘图像检索结果优化算法[J]. 电子学报, 2019, 47(2): 296-301. |
[9] | 杨小冈, 李维鹏, 马玛双. 概率框架下多特征显著性检测算法[J]. 电子学报, 2019, 47(11): 2378-2385. |
[10] | 侯小刚, 赵海英, 马严. 基于超像素多特征融合的快速图像分割算法[J]. 电子学报, 2019, 47(10): 2126-2133. |
[11] | 陈楠, 鲍长春. 基于双耳线索编码原理的语音增强方法[J]. 电子学报, 2019, 47(1): 227-233. |
[12] | 范舜奕, 管桦, 侯志强, 余旺盛, 戴铂. 基于多表观特征子模型更新的鲁棒视觉跟踪[J]. 电子学报, 2018, 46(2): 440-446. |
[13] | 孙晓, 潘汀. 基于兴趣区域深度神经网络的静态面部表情识别[J]. 电子学报, 2017, 45(5): 1189-1197. |
[14] | 刘礼才, 李锐光, 殷丽华, 郭云川, 项菲. 面向移动智能设备的多特征融合隐式鉴别机制研究[J]. 电子学报, 2016, 44(11): 2713-2719. |
[15] | 杨晓超;周 越;署 光;张田昊;. 基于Gabor相位谱和流型学习的步态识别方法[J]. 电子学报, 2009, 37(4): 753-757. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||