基于最佳虚拟网关的认知SCMA系统

孟乃宣, 孙君

电子学报 ›› 2021, Vol. 49 ›› Issue (4) : 736-743.

PDF(2938 KB)
PDF(2938 KB)
电子学报 ›› 2021, Vol. 49 ›› Issue (4) : 736-743. DOI: 10.12263/DZXB.20200165
学术论文

基于最佳虚拟网关的认知SCMA系统

  • 孟乃宣, 孙君
作者信息 +

Cognitive SCMA System Based on Optimal Virtual Gateway

  • MENG Nai-xuan, SUN Jun
Author information +
文章历史 +

摘要

在5G的海量机器类通信(mMTC)场景下,为解决频谱资源不足和网络拥塞问题,本文提出一种基于最佳虚拟网关的认知SCMA系统模型.该模型根据QoS要求和地理位置把机器类通信设备(MTCD)分成独立的集群,在每个集群中通过认知无线电技术感知可能提供空闲频谱资源的LTE用户,定义为虚拟网关,再根据满意度最大规则选出最佳虚拟网关,将最佳虚拟网关提供的频谱资源分为多个子载波组,并设计MTCD与子载波组的最优匹配算法,MTCD以SCMA (稀疏码多址接入Sparse Code Multiple Access)方式接入网络.仿真结果表明所提方案可有效提高系统的吞吐量.

Abstract

In the massive machine type communication (mMTC) scenario of 5G, in order to solve the problem of insufficient spectrum resources and imperfect resource allocation, this paper proposes a cognitive SCMA system model based on the best virtual gateway. This model divides machine type communication devices (MTCDs) into independent clusters based on QoS requirements and geographic location. In each cluster, cognitive radio technology is used to perceive LTE (Long Time Evolution) users who may provide idle spectrum resources, which are defined as virtual gateways. Then the best virtual gateway is selected according to the rule of maximum satisfaction. The spectrum provided by the best virtual gateway is divided into multiple subcarrier groups, and design an optimal matching algorithm between MTCDs and subcarrier groups. MTCDs access the network through the SCMA mode. Simulation results show that the proposed scheme can effectively improve the throughput of the system.

关键词

海量机器类通信 / 虚拟网关 / 认知无线电 / 稀疏码多址接入(SCMA) / 子载波组匹配

Key words

massive machine type communication (mMTC) / virtual gateway / cognitive radio / SCMA (sparse code multiple access) / subcarrier group matching

引用本文

导出引用
孟乃宣, 孙君. 基于最佳虚拟网关的认知SCMA系统[J]. 电子学报, 2021, 49(4): 736-743. https://doi.org/10.12263/DZXB.20200165
MENG Nai-xuan, SUN Jun. Cognitive SCMA System Based on Optimal Virtual Gateway[J]. Acta Electronica Sinica, 2021, 49(4): 736-743. https://doi.org/10.12263/DZXB.20200165
中图分类号: TN929.5   

参考文献

[1] GU J,WANG W,HUANG A,et al.Distributed cache replacement for caching-enable base stations in cellular networks[A].IEEE International Conference on Communications[C].New York,USA:IEEE,2014.2648-2653.
[2] 费泽松,肖玲玲,刘婷.基于LTE系统的巨量机器类通信性能分析[J].北京理工大学学报,2017,37(3):304-309. FEI Ze-song,XIAO Ling-ling,LIU Ting.Massive machine-type communication performance analysis based on long term evolution (LTE) system[J].Transactions of Beijing Institute of Technology,2017,37(3):304-309.(in Chinese)
[3] 蒋继胜,朱晓荣.H2H与M2M共存场景下的上行资源分配算法[J].电子学报,2018,46(5):1259-1264. JIANG Ji-sheng,ZHU Xiao-rong.An uplink resource allocation algorithm under the scenario of coexistence of H2H & M2M based on knapsack model[J].Acta Electronica Sinica,2018,46(5):1259-1264.(in Chinese)
[4] LI M,YU F R,SI P,et al.Energy-efficient machine-to-machine (M2M) communications in virtualized cellular networks with mobile edge computing (MEC)[J].IEEE Transactions on Mobile Computing,2019,18(7):1541-1555.
[5] LIANG L,XU L,CAO B,et al.A cluster-based congestion-mitigating access scheme for massive M2M communications in internet of things[J].IEEE Internet of Things Journal,2018,5(3):2200-2211.
[6] GUO J,DURRANI S,ZHOU X,et al.Massive machine type communication with data aggregation and resource scheduling[J].IEEE Transactions on Communications,2017,65(9):4012-4026.
[7] SALAM T,REHMAN W U,TAO X.Cooperative data aggregation and dynamic resource allocation for massive machine type communication[J].IEEE Access,2018,pp(6):4145-4158.
[8] ATAT R,LIU L,MASTRONARDE N,YI Y.Energy harvesting-based D2D-assisted machine-type communications[J].IEEE Transactions on Communications,2017,65(3):1289-1302.
[9] MIAO G,AZARI A,HWANG T.E2-MAC:Energy efficient medium access for massive M2M communications[J].IEEE Transactions on Communications,2016,64(11):4720-4735.
[10] GUO Wen-xiang,YU Zhi-yong,PANG Chen,SUN Ya-min.Overview on cognitive radio spectrum sensing technology[J].Communications Technology,2018,51(2):261-265.
[11] 孙君,熊关.SCMA mMTC系统中基于联盟区块链的无线电资源交易的信用支付[J].电子学报,2019,47(8):1677-1684. SUN Jun,XIONG Guan.Credit payment for radio resources transactions based on consortium blockchain in SCMA mMTC[J].Acta Electronica Sinica,2019,47(8):1677-1684.(in Chinese)
[12] WANG S,SHI W,WANG C.Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty[J].IEEE Transactions on Communications,2015,63(9):3092-3102.
[13] 贾亚男,岳殿武.博弈论框架下认知小蜂窝网络的动态资源分配算法[J].电子学报,2015,43(10):1911-1917. JIA Ya-nan,YUE Dian-wu.Dynamic resource allocation algorithm based on game theory in cognitive small cell networks[J].Acta Electronica Sinica,2015,43(10):1911-1917.(in Chinese)
[14] XU W,LI X,LEE C,et al.Joint sensing duration adaptation,user matching,and power allocation for cognitive OFDM-NOMA systems[J].IEEE Transactions on Wireless Communications,2018,17(2):1269-1282.
[15] LI X,XU W,FENG Z,et al.Matching-theory-based spectrum utilization in cognitive NOMA-OFDM systems[A].IEEE Wireless Communications and Networking Conference[C].New York,USA:IEEE,2017.1-6.
[16] HU L,SHI R,MAO M,et al.Optimal energy-efficient transmission for hybrid spectrum sharing in cooperative cognitive radio networks[J].China Communications,2019,16(6):150-161.
[17] LIU Xin,LI Qing-zhong,TAN Xue-zhi.Joint optimization of sensing time and cooperative user in cognitive radio[A].The 7th International Conference on Communications and Networking[C].New York,USA:IEEE,2012.325-328.
[18] XIONG G,SUN J.An optimal resource allocation algorithm based on sum rate maximization for uplink SCMA system[A].IEEE 18th International Conference on Communication Technology[C].New York,USA:IEEE,2018.805-810.
PDF(2938 KB)

1187

Accesses

0

Citation

Detail

段落导航
相关文章

/