[1] SARA H,HEYDAR T S.Design of nonlinear conformable fractional-order sliding mode controller for a class of nonlinear systems[J].Journal of Control,Automation and Electrical Systems,2019,35(3):313-338. [2] ZHANG C.Synchronization and tracking of multi-space craft formation attitude control using adaptive sliding mode[J].Asian Journal of Control,2019,21(2):832-846. [3] SUN Z Y,DAI Y Y,CHEN C C.Global fast finite-time partial state feedback stabilization of high-order nonlinear systems with dynamic uncertainties[J].Information Sciences,2019,77(1):219-236. [4] 毛北行,周长芹.分数阶不确定Duffling混沌系统的终端滑模同步[J].东北师范大学学报(自然版),2018,50(2):47-50. MAO B X,ZHOU C Q.Terminal sliding mode synchronization of fractional-order uncertain Duffling chaotic systems[J].Journal of Northeast Normal University(Natural Science),2018,50(2):47-50.(in Chinese) [5] 毛北行.分数阶Newton-Leipnik混沌系统滑模同步的两种方法[J].吉林大学学报(理学版),2018,56(3):708-712. MAO B X.Two methods for sliding mode synchronization of fractional-order Newton-Leipnik chaotic systems[J].Journal of Jilin University(Science Edition),2018,56(3):708-712.(in Chinese) [6] 毛北行.纠缠混沌系统的比例积分滑模同步[J].山东大学学报工学版,2018,48(4):50-54. MAO B X.Ratio integral sliding mode synchronization control of entanglement chaotic systems[J].Journal of Shandong University(Engineering Science),2017,47(4):31-36.(in Chinese) [7] 王东晓.分数阶超混沌Bao系统的比例积分滑模同步[J].内蒙古农业大学学报(自然版),2018,39(3):83-89. WANG D X.Proportional integral sliding mode synchronization for fractional-order hyper-chaotic Bao system[J].Journal of Inner Mongolia Agricultural University(Science Edition),2018,39(3):83-89.(in Chinese) [8] 王建军,张伟,王东晓,毛北行.一类整数阶分数阶单摆系统的混沌同步[J].数学的实践与认识,2018,48(3):193-199. WANG J J,ZHANG W,WANG D X,MAO B X.Chaos synchronization of a class of fractional-order simple pendulum[J].Mathematics in Practice and Theory,2018,48(3):193-199.(in Chinese) [9] 程春蕊,朱军辉,毛北行.分数阶单摆系统的终端滑模混沌同步[J].工程数学学报,2019,36(1):99-104. CHENG C R,ZHU J H,MAO B X.Chaos synchronization of fractional-order simple pendulum[J].Chinese Journal of Engineering Mathematics,2019,36(1):99-104.(in Chinese) [10] 宋晓娜,宋帅,满景涛.不确定分数阶Genesio混沌系统的反演滑模同步[J].山东科技大学学报(自然版),2019,38(5):66-71. SONG X N,SONG S,MAN J T.Back-stepping sliding mode synchronization of uncertain fractional-order Genesio chaotic system[J].Journal of Shandong University of Science and Technology (Natural Science),2019,38(5):66-71.(in Chinese) [11] 刘晓君,洪灵.分数阶Genesio-Tesi系统的混沌及自适应同步[J].动力学与控制学报,2016,14(4):318-323. LIU X J,HONG L.Chaos and adaptive synchronization of fractional-order Genesio-Tesi systems[J].Journal of Dynamics and Control,2016,14(4):318-323.(in Chinese) [12] 毛北行,程春蕊.分数阶二次非线性Sprott混沌系统的滑模同步控制[J].数学杂志,2018,38(3):490-496. MAO B X,CHENG C R.Sliding mode synchronization of fractional-order quadratic nonlinearity Sprott chaotic systems[J].Journal of Mathematics,2018,38(3):490-496.(in Chinese) [13] 孙涛,秦卫阳.一类高维动力学系统的混沌预测同步实现方法研究[J].振动与冲击,2016,35(15):50-52. SUN T,QING W Y.Anticipated synchronization of chaos for a class of high dimensional dynamic systems[J].Journal of Vibration and Shock,2016,35(15):50-52.(in Chinese) [14] 王磊,张勇,舒永录.一类高维混沌模型的动力学分析及数值仿真[J].数学的实践与认识,2018,48(12):220-226. WANG L,ZHANG Y,SHU Y L.Dynamic behaviors of a new high-order chaos model and its numerical simulation[J].Mathematics in Practice and Theory,2018,48(12):220-226.(in Chinese) [15] 张勇,舒永录.一类Lorenz型高维混沌系统的分析[J].数学的实践与认识,2020,50(1):216-222. ZHANG Y,SHU Y L.Analysis of a new high-order Lorenztype chaos model[J].Mathematics in Practice and Theory,2020,50(1):216-222.(in Chinese) [16] 彭珊,李万祥,成龙.高维复杂碰撞振动系统的分岔与混沌演化[J].机械设计,2014,31(9):54-57. PENG S,LI W X,CHENG L.Bifurcation and chaos evolution of high-dimensional complicated collision vibration system[J].Journal of Machine Design,2014,31(9):54-57.(in Chinese) [17] 赵灵冬,胡建兵,包志华,等.分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步[J].物理学报,2011,60(10):5071-5075. ZHAO L D,HU J B,BAO Z H,et al.A finite-time stable theory about fractional systems and finite-time synchronization fractional super chaotic Lorenz systems[J].Acta Phys Sin,2011,60(10):5071-5075.(in Chinese) [18] 闫丽宏.广义分数阶Sprott-C混沌系统的有限时间滑同步[J].吉林学报(理学版),2019,57(4):940-945. YAN L H.Finite-time sliding mode synchronization of generalized fractional-order Sprott-C chaotic systems[J].Journal of Jilin University(Science Edition),2019,57(4):940-945.(in Chinese) [19] 吴强,黄建华.分数阶微积分[M].北京,清华大学出版社,2016.12-15. WU Q,HUANG J H.Fractional-Order Calculus[M].Beijing:Tsinghua University Press,2016.12-15.(in Chinese) |