1 |
MasseyJ L. Linear codes with complementary duals[J]. Discrete Mathematics, 1992, 106(107): 337 - 342.
|
2 |
CarletC, GuilleyS. Complementary dual codes for counter-measures to side-channel attacks[A]. The 4th International Castle Meeting Coding Theory and Applications[C]. Palmela Castle, Portugal: Springer, 2015. 97 - 105.
|
3 |
BeelenP, JinL. Explicit MDS codes with complementary duals[J]. IEEE Transactions on Information Theory, 2018, 64(11): 7188 - 7193.
|
4 |
CarletC, MesnagerS, TangC, QiY. Euclidean and Hermitian LCD MDS codes[J]. Designs, Codes and Cryptography, 2018, 86(11): 2606 - 2618.
|
5 |
钱毅,李平,唐永生. 一种四元厄米特LCD码与厄米特自正交码的构造方法[J]. 电子学报,2020,48(3): 577 - 581.
|
|
QianY, LiP, TangY S. A construction method of quaternary Hermitian LCD codes and Hermitian self-orthogonal codes[J]. Acta Electronica Sinica, 2020, 48(3): 577 - 581.(in Chinese)
|
6 |
CarletC, MesnagerS, TangC, et al. Linear codes over 𝔽q are equivalent to LCD codes for q>3[J]. IEEE Transactions on Information Theory, 2018, 64(4): 3010 - 3017.
|
7 |
LiuX, LiuH. LCD codes over finite chain rings[J]. Finite Fields and Their Applications, 2015, 34(7): 1 - 19.
|
8 |
ShiM, ZhuH, QianL, et al. On self-dual and LCD double circulant and double negacirculant codes over 𝔽q+u𝔽q[J]. Cryptography and Communications, 2020, 12(1): 53 - 70.
|
9 |
LiuZ, WangJ. Linear complementary dual codes over rings[J]. Designs, Codes and Cryptography, 2019, 87(11): 3077 - 3086.
|
10 |
AlahmadiA, AlhazmiH, HellesethT, et al. On the lifted Melas code[J]. Cryptography and Communications, 2016, 8(1): 7 - 18.
|
11 |
YangX, MasseyJ L. The necessary and sufficient condition for a cyclic code to have a complementary dual[J]. Discrete Mathematics, 1994, 126(3): 391 - 393.
|
12 |
LiC, DingC, LiS. LCD cyclic codes over finite fields[J]. IEEE Transactions on Information Theory, 2017, 63(7) : 4344 - 4356.
|
13 |
WanZ. Quaternary Codes[M]. Singapore: World Scientific, 1997.
|
14 |
NortonG H, SalageanA. On the Hamming distance of linear codes over a finite chain ring[J]. IEEE Transactions on Information Theory, 2000, 46(3): 1060 - 1067.
|
15 |
NortonG H, SalageanA. On the structure of linear and cyclic codes over a finite chain ring[J]. Applicable Algebra in Engineering, Communication and Computing, 2000, 10(7): 489 - 506.
|
16 |
WolfmannJ. Binary images of cyclic codes over ℤ4[J]. IEEE Transactions on Information Theory, 2001, 47(5): 1773 - 1779.
|
17 |
MacWilliamsF J, SloaneN J A. The Theory of Error-Correcting Codes[M]. Amsterdam, Netherland: North-Holland Publishing Company, 1977.
|
18 |
GrasslM. Bounds on the minimum distance of linear codes and quantum codes[N]. , 2020-06-15.
|
19 |
InterlandoJ C, PalazzoR, EliaM. On the decoding of Reed-Solomon and BCH codes over integer residue rings[J]. IEEE Transactions on Information Theory, 1997, 43(3): 1013 - 1021.
|