1 |
ANTONAKAKISM, PERDISCIR, LEEW, et al. Detecting malware domains at the upper dns hierarchy. USENIX security symposium[C]//Proceedings of the 20th USENIX conference on Security. San Francisco, USA: ACM, 2011: 1-16.
|
2 |
YADAVS, REDDYA K K, REDDYA L N, et al. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis[J]. IEEE/ACM Transactions on Networking, 2012, 20(5): 1663-1677.
|
3 |
ANTONAKAKISM, PERDISCIR, NADJIY, et al. From throw-away traffic to bots: Detecting the rise of DGA-based malware[C]//Proceedings of the 21st USENIX Conference on Security Symposium. Washington, USA: ACM, 2012: 491-506.
|
4 |
WOODBRIDGEJ, ANDERSONH S, AHUJAA, et al. Predicting domain generation algorithms with long short-term memory networks[J]. [2020]. .
|
5 |
VINAYAKUMARR, SOMANK P, POORNACHANDRANP, et al. Evaluating deep learning approaches to characterize and classify the DGAs at scale[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(3): 1265-1276.
|
6 |
吕品, 李全刚, 柳厅文, 等. 基于双向LSTM的误植域名滥用检测方法[J]. 电子学报, 2018, 46(9): 2081-2086.
|
|
LUP, LIQ G, LIUT W, et al. Towards typosquatting abuse detection using bi-directional LSTM[J]. Acta Electronica Sinica, 2018, 46(9): 2081-2086. (in Chinese)
|
7 |
TRAND, MAC H, TONGV, et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection[J]. Neurocomputing, 2018, 275: 2401-2413.
|
8 |
HIGHNAMK, PUZIOD, LUOS, et al. Real-time detection of dictionary DGA network traffic using deep learning[J]. SN Computer Science, 2021, 2(2): 1-17.
|
9 |
杜鹏, 丁世飞. 基于混合词向量深度学习模型的DGA域名检测方法[J]. 计算机研究与发展, 2020, 57(2): 433-446.
|
|
DUP, DINGS F. A DGA domain name detection method based on deep learning models with mixed word embedding[J]. Journal of Computer Research and Development, 2020, 57(2): 433-446. (in Chinese)
|
10 |
HEK M, ZHANGX Y, RENS Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 770-778.
|
11 |
HOWARDA G, ZHUM L, CHENB, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017)[2020]. .
|
12 |
TRAND, MAC H, TONGV, et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection[J]. Neurocomputing, 2018, 275: 2401-2413.
|
13 |
VINAYAKUMARR, SOMANK P, POORNACHANDRANP, et al. DBD: Deep Learning DGA-based Botnet Detection[M]//Deep Learning Applications for Cyber Security. Cham: Springer International Publishing, 2019: 127-149.
|
14 |
YUB, PANJ, HUJ M, et al. Character level based detection of DGA domain names[C]//2018 International Joint Conference on Neural Networks (IJCNN). Rio, Brazil: IEEE, 2018: 1-8.
|
15 |
QIAOY C, ZHANGB, ZHANGW Z, et al. DGA domain name classification method based on long short-term memory with attention mechanism[J]. Applied Sciences, 2019, 9(20): 4205.
|
16 |
ANDERSONH S, WOODBRIDGEJ, FILARB. DeepDGA: Adversarially-tuned domain generation and detection[C]//Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. New York, USA: ACM, 2016: 13-21.
|
17 |
SIDIL, NADLERA, SHABTAIA. MaskDGA: A black-box evasion technique against DGA classifiers and adversarial defenses[EB/OL]. (2019)[2020]. .
|
18 |
PECKJ, NIEC, SIVAGURUR, et al. CharBot: A simple and effective method for evading DGA classifiers[J]. IEEE Access, 2019, 7: 91759-91771.
|