1 |
LeCunY, BottouL, BengioY, et al. Gradient-based learning applied to document recognition[A]. Proceedings of the IEEE[C]. USA: IEEE, 1998. 2278-2324.
|
2 |
FuJ, LiuJ, TianH J, et al. Dual attention network for scene segmentation[A]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)[C]. Long Beach, CA, USA: IEEE, 2019. 3141-3149.
|
3 |
SakkosD, LiuH, HanJ G, et al. End-to-end video background subtraction with 3d convolutional neural networks[J]. Multimedia Tools and Applications, 2018, 77(17): 23023-23041.
|
4 |
WangY, LuoZ M, JodoinP M. Interactive deep learning method for segmenting moving objects[J]. Pattern Recognition Letters, 2017, 96: 66-75.
|
5 |
LimL A, Yalim KelesH. Foreground segmentation using convolutional neural networks for multiscale feature encoding[J]. Pattern Recognition Letters, 2018, 112: 256-262.
|
6 |
LimL A, KelesH Y. Learning multi-scale features for foreground segmentation[J]. Pattern Analysis and Applications, 2020, 23(3): 1369-1380.
|
7 |
BabaeeM, DinhD T, RigollG. A deep convolutional neural network for video sequence background subtraction[J]. Pattern Recognition, 2018, 76: 635-649.
|
8 |
WangY, JodoinP M, PorikliF, et al. CDnet 2014: An expanded change detection benchmark dataset[A]. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops[C]. Columbus, OH, USA: IEEE, 2014. 393-400.
|
9 |
MaddalenaL, PetrosinoA. Towards benchmarking scene background initialization[A]. New Trends in Image Analysis and Processing-ICIAP 2015 Workshops[C]. Cham, GER: Springer, 2015. 469-476. DOI:10.1007/978-3-319-23222-5_57.
|
10 |
MandalM, DharV, MishraA, et al. 3DFR: A swift 3D feature reductionist framework for scene independent change detection[J]. IEEE Signal Processing Letters, 2019, 26(12): 1882-1886.
|
11 |
BouwmansT, JavedS, SultanaM, et al. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[J]. Neural Networks, 2019, 117: 8-66.
|
12 |
BrahamM, Van DroogenbroeckM. Deep background subtraction with scene-specific convolutional neural networks[A]. 2016 International Conference on Systems, Signals and Image Processing (IWSSIP)[C]. Bratislava, Slovakia: IEEE, 2016. 1-4.
|
13 |
ChenM L, WeiX, YangQ X, et al. Spatiotemporal GMM for background subtraction with superpixel hierarchy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1518-1525.
|
14 |
ShiG M, HuangT, DongW S, et al. Robust foreground estimation via structured Gaussian scale mixture modeling[J]. IEEE Transactions on Image Processing, 2018, 27(10): 4810-4824.
|
15 |
常侃, 张智勇, 陈诚, 等. 采用低秩与加权稀疏分解的视频前景检测算法[J]. 电子学报, 2017, 45(9): 2272-2280.
|
|
ChangK, ZhangZ Y, ChenC, et al. Video foreground detection by low-rank and reweighted sparse decomposition[J]. Acta Electronica Sinica, 2017, 45(9): 2272-2280. (in Chinese)
|
16 |
秦晓燕, 袁广林, 李从利, 等. 一种快速鲁棒的视频序列运动目标检测方法[J]. 电子学报, 2017, 45(10): 2355-2361.
|
|
QinX Y, YuanG L, LiC L, et al. An approach to fast and robust detecting of moving target in video sequences[J]. Acta Electronica Sinica, 2017, 45(10): 2355-2361. (in Chinese)
|
17 |
PaulN, SinghA, MidyaA, et al. Moving object detection using modified temporal differencing and local fuzzy thresholding[J]. The Journal of Supercomputing, 2017, 73(3): 1120-1139.
|
18 |
BilodeauG A, JodoinJ P, SaunierN. Change detection in feature space using local binary similarity patterns[A]. 2013 International Conference on Computer and Robot Vision[C]. Regina, SK, Canada: IEEE, 2013. 106-112.
|
19 |
St-CharlesP L, BilodeauG A, BergevinR. A self-adjusting approach to change detection based on background word consensus[A]. 2015 IEEE Winter Conference on Applications of Computer Vision[C]. Waikoloa, HI, USA: IEEE, 2015. 990-997.
|
20 |
St-CharlesP L, BilodeauG A, BergevinR. SuBSENSE: A universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2015, 24(1): 359-373.
|
21 |
BrahamM, PiérardS, Van DroogenbroeckM. Semantic background subtraction[A]. 2017 IEEE International Conference on Image Processing (ICIP)[C]. Beijing, China: IEEE, 2017. 4552-4556.
|
22 |
SultanaM, MahmoodA, JavedS, et al. Unsupervised deep context prediction for background estimation and foreground segmentation[J]. Machine Vision and Applications, 2019, 30(3): 375-395.
|
23 |
ZengD D, ZhuM, KuijperA. Combining background subtraction algorithms with convolutional neural network[J]. Journal of Electronic Imaging, 2019, 28(1): 013011.
|
24 |
ZhangJ, LiY, ChenF Q, et al. X-net: A binocular summation network for foreground segmentation[J]. IEEE Access, 2019, 7: 71412-71422.
|
25 |
ChenL C, ZhuY K, PapandreouG, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[A]. European Conference on Computer Vision[C]. Cham, GER: Springer, 2018. 833-851. DOI:10.1007/978-3-030-01234-2_49.
|
26 |
YangM K, YuK, ZhangC, et al. DenseASPP for semantic segmentation in street scenes[A]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Salt Lake City, UT, USA: IEEE, 2018. 3684-3692.
|
27 |
LinT Y, GoyalP, GirshickR, et al. Focal loss for dense object detection[A]. 2017 IEEE International Conference on Computer Vision (ICCV)[C]. Venice, Italy: IEEE, 2017. 2999-3007.
|
28 |
BiancoS, CioccaG, SchettiniR. Combination of video change detection algorithms by genetic programming[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 914-928.
|
29 |
ChenM L, YangQ X, LiQ, et al. Spatiotemporal background subtraction using minimum spanning tree and optical flow[A]. European Conference on Computer Vision[C]. Cham, GER: Springer, 2014. 521-534. DOI:10.1007/978-3-319-10584-0_34.
|
30 |
SajidH, CheungS C S. Universal multimode background subtraction[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3249-3260.
|