电子学报 ›› 2021, Vol. 49 ›› Issue (7): 1400-1405.DOI: 10.12263/DZXB.20200747

• 学术论文 • 上一篇    下一篇

GSSK‑VLC系统中基于SVM的LED选择算法

张芳鑫1, 王法松1, 李睿2(), 左婷1   

  1. 1.郑州大学信息工程学院,河南 郑州 450001
    2.河南工业大学理学院,河南 郑州 450001
  • 收稿日期:2020-07-19 修回日期:2020-12-16 出版日期:2021-07-25
    • 作者简介:
    • 张芳鑫 男,1993年4月生于河南鹤壁,现为郑州大学信息工程学院硕士研究生,研究方向为可见光通信天线选择技术.E‑mail:zzuzfx2018@163.com
      王法松 男,1979年3月生于河南潢川,工学博士,教授.2002年获中国地质大学(武汉)学士和硕士学位,2013年获西安电子科技大学博士学位,研究方向为可见光通信、稀疏信号处理.E‑mail:iefswang@zzu.edu.cn
      李 睿 女,1979年7月生于河南郑州,副教授.研究方向为优化理论与算法及其应用.E‑mail: slxlirui@haut.edu.cn
    • 基金资助:
    • 河南省科技攻关 (192102210088); 河南省高校科技创新人才 (18HASTIT021); 国家自然科学基金 (61401401)

SVM‑Based LED Selection Algorithm in GSSK‑VLC System

ZHANG Fang-xin1, WANG Fa-song1, LI Rui2(), ZUO Ting1   

  1. 1.School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
    2.School of Sciences, Henan University of Technology, Zhengzhou, Henan 450001, China
  • Received:2020-07-19 Revised:2020-12-16 Online:2021-07-25 Published:2021-08-11
    • Supported by:
    • Technology Research and Development Program of Henan Province (192102210088); Science and Technology Innovation Talents Program of Colleges and Universities in Henan Province (18HASTIT021); National Natural Science Foundation of China (61401401)

摘要:

为了有效降低室内基于广义空移键控(Generalized Space Shift Keying,GSSK)调制技术的可见光通信(Visible Light Communications,VLC)系统LED选择算法的复杂度,提高系统的LED选择速度,提出了一种基于支持向量机(Support Vector Machine,SVM)的机器学习低复杂度高效率LED选择算法.通过将室内GSSK?VLC系统的LED选择等价建模为多分类的机器学习问题,利用核SVM构建LED选择的最优化问题,通过对偶理论,获得原问题的二次凸规划对偶问题,从而高效的获取SVM的最优分类参数.最后,通过学习训练获得的最优分类参数实现对任意给定用户信道信息的在线天线选择.通过计算机仿真和复杂度分析,与传统的LED选择算法相比,本文提出的算法能够在实现在线LED选择的同时保持低误码率(Bit Error Ratio,BER)性能,表明了该算法的有效性.

关键词: 可见光通信, 广义空移键控, LED选择, 支持向量机

Abstract:

In order to reduce the complexity of LED selection algorithm in generalized space shift keying (GSSK) aided indoor visible light communication (VLC) system, a support vector machine (SVM) assisted low complexity and high efficiency machine learning LED selection algorithm is proposed for the considered GSSK?VLC system. By modeling the LED selection in indoor GSSK?VLC system as a multi?classification problem, an optimization problem is constructed by utilizing kernel SVM. After the optimal parameters of the learning system are obtained, the LED selection procedure can be accomplished efficiently for any given user’s channel state information. Simulation results and complexity analysis show that, compared with traditional LED selection algorithms, the proposed SVM aided LED selection algorithm can achieve an ideal bit error ratio (BER) performance while having considerably lower complexity.

Key words: visible light communication (VLC), generalized space shift keying (GSSK), LED selection, support vector machine (SVM)

中图分类号: