1 |
YangY C, LoquercioA, ScaramuzzaD, et al. Unsupervised moving object detection via contextual information separation[A]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) [C]. Long Beach, CA, USA: IEEE, 2019. 879 - 888.
|
2 |
SaxenaT, TripathiV, ChandolaA, et al. Robust moving object detection and tracking framework using linear phase FIR filter[A]. International Conference on Emerging Technologies in Computer Engineering[C]. Singapore: Springer, 2019. 34 - 44.
|
3 |
B S, TomA J, GeorgeS N. Simultaneous denoising and moving object detection using low rank approximation[J]. Future Generation Computer Systems, 2019, 90: 198 - 210.
|
4 |
CandèsE J, LiX D, MaY, et al. Robust principal component analysis[J]. Journal of the ACM, 2011, 58(3): 1 - 37.
|
5 |
XUEYa-wen, GUOXiao-jie, CAOXiao-chun. Motion saliency detection using low-rank and sparse decomposition[A]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing[C]. Kyoto, Japan: IEEE, 2012. 1485 - 1488.
|
6 |
ZHOUTian-yi, TAODa-cheng. Godec: Randomized low-rank & sparse matrix decomposition in noisy case[A]. Proceedings of the 28th International Conference on Machine Learning[C]. Sydney: ICML,2011. 33 - 40.
|
7 |
WANGNai-yan, YAOTian-sheng, WANGJing-dong, et al. A probabilistic approach to robust matrix factorization. European Conference on Computer Vision[C]. Berlin, Germany: Springer, 2012. 126 - 139.
|
8 |
ZhouX W, YangC, YuW C. Moving object detection by detecting contiguous outliers in the low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597 - 610.
|
9 |
ZHAOQian, MENGDe-yu, XUZong-ben, et al. Robust principal component analysis with complex noise[A]. 31st International Conference on Machine Learning[C]. Beijing, China: Microtome,2014. 55 - 63.
|
10 |
周伟, 孙玉宝, 刘青山, 等. 运动目标检测的l0群稀疏RPCA模型及其算法[J]. 电子学报, 2016, 44(3): 627 - 632.
|
|
ZhouW, SunY B, LiuQ S, et al. l0 group sparse RPCA model and algorithm for moving object detection[J]. Acta Electronica Sinica, 2016, 44(3): 627 - 632. (in Chinese)
|
11 |
GaoZ, CheongL F, WangY X. Block-sparse RPCA for salient motion detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 1975 - 1987.
|
12 |
AchantaR, ShajiA, SmithK, et al. SLIC Superpixels[R]. Lausanne, Swiss Confederation: EPFL, 2010.
|
13 |
ZhangH M, YangJ, XieJ C, et al. Weighted sparse coding regularized nonconvex matrix regression for robust face recognition[J]. Information Sciences, 2017, 394/395: 1 - 17.
|
14 |
WANGShu-sen, LIUDe-hua, ZHANGZhi-hua. Nonconvex relaxation approaches to robust matrix recovery[A]. Twenty-Third International Joint Conference on Artificial Intelligence[C].Beijing, China: AAAI Press, 2013. 1764 - 1770.
|
15 |
CaoW F, SunJ, XuZ B. Fast image deconvolution using closed-form thresholding formulas of Lq(Q=12, 23) regularization[J]. Journal of Visual Communication and Image Representation, 2013, 24(1): 31 - 41.
|
16 |
ShiJ B, MalikJ. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888 - 905.
|
17 |
LevinshteinA, StereA, KutulakosK N, et al. TurboPixels: Fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290 - 2297.
|
18 |
AchantaR, ShajiA, SmithK, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274 - 2282.
|
19 |
SunY B, LiuQ S, TangJ H, et al. Learning discriminative dictionary for group sparse representation[J]. IEEE Transactions on Image Processing, 2014, 23(9): 3816 - 3828.
|
20 |
LIUBo, YUANXiao-tong, YUYang, et al. Decentralized robust subspace clustering[A]. Thirtieth AAAI Conference on Artificial Intelligence[C]. Phoenix, Arizona USA: AAAI Press,2016. 3539 - 3545.
|
21 |
王佰玲, 田志宏, 张永铮. 奇异值分解算法优化[J]. 电子学报, 2010, 38(10): 2234 - 2239.
|
|
WangB L, TianZ H, ZhangY Z. Optimization of singular vector decomposition algorithm[J]. Acta Electronica Sinica, 2010, 38(10): 2234 - 2239. (in Chinese)
|
22 |
LiuG C, LinZ C, YanS C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171 - 184.
|
23 |
LINZhou-chen, CHENMin-ming, et al. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. , 2010.
|
24 |
LiL Y, HuangW M, GuIreneY H, et al. Statistical modeling of complex backgrounds for foreground object detection[J]. IEEE Transactions on Image Processing, 2004, 13(11): 1459 - 1472.
|
25 |
MahadevanV, VasconcelosN. Spatiotemporal saliency in dynamic scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 171 - 177.
|
26 |
ToyamaK, KrummJ, BrumittB, et al. Wallflower: Principles and practice of background maintenance[A]. Proceedings of The Seventh IEEE International Conference on Computer Vision[C]. Kerkyra, Greece: IEEE, 1999. 255 - 261.
|
27 |
WangYi, JodoinP M, PorikliF, et al. CDnet 2014: An expanded change detection benchmark dataset[A]. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops[C]. Columbus, USA: IEEE, 2014. 393 - 400.
|
28 |
YongH W, MengD Y, ZuoW M, et al. Robust online matrix factorization for dynamic background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7): 1726 - 1740.
|
29 |
LiuX, ZhaoG Y, YaoJ W, et al. Background subtraction based on low-rank and structured sparse decomposition[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2502 - 2514.
|
30 |
YangH H, QuS R. Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition[J]. IET Intelligent Transport Systems, 2018, 12(1): 75 - 85.
|