电子学报 ›› 2022, Vol. 50 ›› Issue (1): 207-216.DOI: 10.12263/DZXB.20200839
邹军华1, 段晔鑫1,2, 任传伦3, 邱俊洋4, 周星宇1, 潘志松1
收稿日期:
2020-08-04
修回日期:
2021-01-22
出版日期:
2022-01-25
作者简介:
基金资助:
ZOU Jun-hua1, DUAN Ye-xin1,2, REN Chuan-lun3, QIU Jun-yang4, ZHOU Xing-yu1, PAN Zhi-song1
Received:
2020-08-04
Revised:
2021-01-22
Online:
2022-01-25
Published:
2022-01-25
Supported by:
摘要:
深度神经网络在多种模式识别任务上都取得了巨大突破,但相关研究表明深度神经网络存在脆弱性,容易被精心设计的对抗样本攻击.本文以分类任务为着手点,研究对抗样本的迁移性,提出基于噪声初始化、Adam-Nesterov方法和准双曲动量方法的对抗样本生成方法.本文提出一种对抗噪声的初始化方法,通过像素偏移方法来预先增强干净样本的攻击性能.同时,本文使用Adam-Nesterov方法和准双曲动量方法来改进现有方法中的Nesterov方法和动量方法,实现更高的黑盒攻击成功率.在不需要额外运行时间和运算资源的情况下,本文方法可以和其他的攻击方法组合,并显著提高了对抗样本的黑盒攻击成功率.实验表明,本文的最强攻击组合为ANI-TI-DIQHM*(其中*代表噪声初始化),其对经典防御方法的平均黑盒攻击成功率达到88.68%,对较为先进的防御方法的平均黑盒攻击成功率达到82.77%,均超过现有最高水平.
中图分类号:
邹军华, 段晔鑫, 任传伦, 邱俊洋, 周星宇, 潘志松. 基于噪声初始化、Adam-Nesterov方法和准双曲动量方法的对抗样本生成方法[J]. 电子学报, 2022, 50(1): 207-216.
ZOU Jun-hua, DUAN Ye-xin, REN Chuan-lun, QIU Jun-yang, ZHOU Xing-yu, PAN Zhi-song. Perturbation Initialization, Adam-Nesterov and Quasi-Hyperbolic Momentum for Adversarial Examples[J]. Acta Electronica Sinica, 2022, 50(1): 207-216.
攻击组合简称 | 定义 |
---|---|
TI-DIM(基准方法) | TIM,DIM和MI-FGSM的组合 |
TI-DIQHM | TIM,DIM和QHMI-FGSM的组合 |
TI-DIQHM* | TIM,DIM,QHMI-FGSM和噪声初始化的组合 |
NI-TI-DIM(基准方法) | TIM,DIM,NI-FGSM和MI-FGSM的组合 |
ADNI-TI-DIQHM | TIM,DIM,ADNI-FGSM和QHMI-FGSM的组合 |
ANI-TI-DIQHM | TIM,DIM,ANI-FGSM和QHMI-FGSM的组合 |
ANI-TI-DIQHM* | TIM,DIM,ANI-FGSM,QHMI-FGSM和噪声初始化的组合 |
SI-NI-TI-DIM | SIM,TIM,DIM,NI-FGSM和MI-FGSM的组合 |
表1 攻击组合简称及其定义
攻击组合简称 | 定义 |
---|---|
TI-DIM(基准方法) | TIM,DIM和MI-FGSM的组合 |
TI-DIQHM | TIM,DIM和QHMI-FGSM的组合 |
TI-DIQHM* | TIM,DIM,QHMI-FGSM和噪声初始化的组合 |
NI-TI-DIM(基准方法) | TIM,DIM,NI-FGSM和MI-FGSM的组合 |
ADNI-TI-DIQHM | TIM,DIM,ADNI-FGSM和QHMI-FGSM的组合 |
ANI-TI-DIQHM | TIM,DIM,ANI-FGSM和QHMI-FGSM的组合 |
ANI-TI-DIQHM* | TIM,DIM,ANI-FGSM,QHMI-FGSM和噪声初始化的组合 |
SI-NI-TI-DIM | SIM,TIM,DIM,NI-FGSM和MI-FGSM的组合 |
攻击组合 | Inc-v3 | Inc-v4 | IncRes-v2 | Res-v2-101 | 多模型集成 |
---|---|---|---|---|---|
TI-DIM | 171.3 | 266.7 | 275.1 | 237.9 | 766.9 |
TI-DIQHM | 169.2 | 259.3 | 279.5 | 239.5 | 761.4 |
TI-DIQHM* | 180.9 | 273.4 | 290.7 | 231.7 | 789.3 |
NI-TI-DIM | 192.5 | 239.7 | 289.1 | 239.5 | 813.4 |
ADNI-TI-DIQHM | 181.6 | 231.0 | 285.9 | 241.5 | 805.9 |
ANI-TI-DIQHM | 189.3 | 224.8 | 273.2 | 251.6 | 823.7 |
ANI-TI-DIQHM* | 194.2 | 231.5 | 285.3 | 263.8 | 832.6 |
SI-NI-TI-DIM | 602.7 | 1083.5 | 1158.3 | 1091.1 | 3491.4 |
表2 生成效率/s
攻击组合 | Inc-v3 | Inc-v4 | IncRes-v2 | Res-v2-101 | 多模型集成 |
---|---|---|---|---|---|
TI-DIM | 171.3 | 266.7 | 275.1 | 237.9 | 766.9 |
TI-DIQHM | 169.2 | 259.3 | 279.5 | 239.5 | 761.4 |
TI-DIQHM* | 180.9 | 273.4 | 290.7 | 231.7 | 789.3 |
NI-TI-DIM | 192.5 | 239.7 | 289.1 | 239.5 | 813.4 |
ADNI-TI-DIQHM | 181.6 | 231.0 | 285.9 | 241.5 | 805.9 |
ANI-TI-DIQHM | 189.3 | 224.8 | 273.2 | 251.6 | 823.7 |
ANI-TI-DIQHM* | 194.2 | 231.5 | 285.3 | 263.8 | 832.6 |
SI-NI-TI-DIM | 602.7 | 1083.5 | 1158.3 | 1091.1 | 3491.4 |
NI-TI-DIM | QHMI-FGSM | ANI-FGSM | 初始化 | Inc-v3ens3 | Inc-v3ens4 | IncResv2ens |
---|---|---|---|---|---|---|
85.5 | 84.9 | 79.9 | ||||
√ | 88.0 | 86.0 | 81.4 | |||
√ | √ | 89.6 | 87.7 | 84.3 | ||
√ | √ | √ | 91.1 | 88.7 | 84.5 |
表3 消融实验成功率/%
NI-TI-DIM | QHMI-FGSM | ANI-FGSM | 初始化 | Inc-v3ens3 | Inc-v3ens4 | IncResv2ens |
---|---|---|---|---|---|---|
85.5 | 84.9 | 79.9 | ||||
√ | 88.0 | 86.0 | 81.4 | |||
√ | √ | 89.6 | 87.7 | 84.3 | ||
√ | √ | √ | 91.1 | 88.7 | 84.5 |
攻击组合 | Inc-v3ens3 | Inc-v3ens4 | IncResv2ens | HGD | R&P | NIPS-r3 | |
---|---|---|---|---|---|---|---|
Inc-v3 | TI-DIM | 46.7 | 47.1 | 38.6 | 38.3 | 36.2 | 41.5 |
TI-DIQHM | 50.3 | 50.7 | 38.9 | 38.5 | 37.2 | 43.6 | |
TI-DIQHM* | 54.4 | 54.0 | 39.6 | 40.1 | 39.5 | 45.6 | |
Inc-v4 | TI-DIM | 48.3 | 47.7 | 39.4 | 40.7 | 39.1 | 41.3 |
TI-DIQHM | 52.9 | 52.2 | 40.8 | 42.3 | 41.9 | 43.1 | |
TI-DIQHM* | 56.2 | 57.1 | 45.5 | 46.8 | 45.7 | 48.4 | |
IncRes-v2 | TI-DIM | 60.5 | 59.3 | 59.3 | 58.4 | 57.5 | 61.4 |
TI-DIQHM | 66.0 | 62.4 | 62.4 | 61.9 | 59.3 | 63.9 | |
TI-DIQHM* | 70.6 | 69.2 | 66.6 | 65.4 | 63.8 | 69.3 | |
Res-v2-101 | TI-DIM | 56.3 | 55.5 | 49.1 | 51.3 | 50.6 | 52.1 |
TI-DIQHM | 59.8 | 58.6 | 51.1 | 52.9 | 51.5 | 54.4 | |
TI-DIQHM* | 64.0 | 62.4 | 55.4 | 55.9 | 54.1 | 59.5 |
表4 TI-DIM,TI-DIQHM和TI-DIQHM*单模型黑盒攻击成功率/%
攻击组合 | Inc-v3ens3 | Inc-v3ens4 | IncResv2ens | HGD | R&P | NIPS-r3 | |
---|---|---|---|---|---|---|---|
Inc-v3 | TI-DIM | 46.7 | 47.1 | 38.6 | 38.3 | 36.2 | 41.5 |
TI-DIQHM | 50.3 | 50.7 | 38.9 | 38.5 | 37.2 | 43.6 | |
TI-DIQHM* | 54.4 | 54.0 | 39.6 | 40.1 | 39.5 | 45.6 | |
Inc-v4 | TI-DIM | 48.3 | 47.7 | 39.4 | 40.7 | 39.1 | 41.3 |
TI-DIQHM | 52.9 | 52.2 | 40.8 | 42.3 | 41.9 | 43.1 | |
TI-DIQHM* | 56.2 | 57.1 | 45.5 | 46.8 | 45.7 | 48.4 | |
IncRes-v2 | TI-DIM | 60.5 | 59.3 | 59.3 | 58.4 | 57.5 | 61.4 |
TI-DIQHM | 66.0 | 62.4 | 62.4 | 61.9 | 59.3 | 63.9 | |
TI-DIQHM* | 70.6 | 69.2 | 66.6 | 65.4 | 63.8 | 69.3 | |
Res-v2-101 | TI-DIM | 56.3 | 55.5 | 49.1 | 51.3 | 50.6 | 52.1 |
TI-DIQHM | 59.8 | 58.6 | 51.1 | 52.9 | 51.5 | 54.4 | |
TI-DIQHM* | 64.0 | 62.4 | 55.4 | 55.9 | 54.1 | 59.5 |
攻击组合 | Inc-v3ens3 | Inc-v3ens4 | IncResv2ens | HGD | R&P | NIPS-r3 | |
---|---|---|---|---|---|---|---|
Inc-v3 | NI-TI-DIM | 49.2 | 49.1 | 37.1 | 37.9 | 35.6 | 41.3 |
ADNI-TI-DIQHM | 50.1 | 49.8 | 37.6 | 38.5 | 36.9 | 42.1 | |
ANI-TI-DIQHM | 53.0 | 52.2 | 37.1 | 39.2 | 37.9 | 42.8 | |
ANI-TI-DIQHM* | 53.5 | 51.4 | 37.7 | 39.5 | 38.1 | 43.7 | |
Inc-v4 | NI-TI-DIM | 49.6 | 51.0 | 37.2 | 37.1 | 36.5 | 41.3 |
ADNI-TI-DIQHM | 50.3 | 51.5 | 38.4 | 38.8 | 37.2 | 42.9 | |
ANI-TI-DIQHM | 53.8 | 51.9 | 42.1 | 41.6 | 40.3 | 43.5 | |
ANI-TI-DIQHM* | 54.2 | 54.2 | 42.4 | 42.5 | 41.9 | 44.2 | |
IncRes-v2 | NI-TI-DIM | 64.7 | 63.9 | 61.7 | 62.1 | 60.9 | 64.5 |
ADNI-TI-DIQHM | 66.5 | 64.9 | 62.5 | 63.4 | 62.9 | 65.2 | |
ANI-TI-DIQHM | 68.7 | 66.5 | 66.7 | 65.1 | 64.0 | 67.5 | |
ANI-TI-DIQHM* | 68.9 | 67.6 | 67.0 | 66.9 | 65.8 | 68.3 | |
Res-v2-101 | NI-TI-DIM | 59.2 | 58.7 | 50.0 | 51.2 | 49.7 | 57.6 |
ADNI-TI-DIQHM | 60.0 | 60.5 | 52.9 | 53.9 | 51.3 | 58.7 | |
ANI-TI-DIQHM | 65.1 | 62.1 | 54.0 | 55.9 | 52.1 | 59.6 | |
ANI-TI-DIQHM* | 64.0 | 63.7 | 55.6 | 56.6 | 53.2 | 60.4 |
表5 NI-TI-DIM,ADNI-TI-DIQHM,ANI-TI-DIQHM和ANI-TI-DIQHM*单模型黑盒攻击成功率/%
攻击组合 | Inc-v3ens3 | Inc-v3ens4 | IncResv2ens | HGD | R&P | NIPS-r3 | |
---|---|---|---|---|---|---|---|
Inc-v3 | NI-TI-DIM | 49.2 | 49.1 | 37.1 | 37.9 | 35.6 | 41.3 |
ADNI-TI-DIQHM | 50.1 | 49.8 | 37.6 | 38.5 | 36.9 | 42.1 | |
ANI-TI-DIQHM | 53.0 | 52.2 | 37.1 | 39.2 | 37.9 | 42.8 | |
ANI-TI-DIQHM* | 53.5 | 51.4 | 37.7 | 39.5 | 38.1 | 43.7 | |
Inc-v4 | NI-TI-DIM | 49.6 | 51.0 | 37.2 | 37.1 | 36.5 | 41.3 |
ADNI-TI-DIQHM | 50.3 | 51.5 | 38.4 | 38.8 | 37.2 | 42.9 | |
ANI-TI-DIQHM | 53.8 | 51.9 | 42.1 | 41.6 | 40.3 | 43.5 | |
ANI-TI-DIQHM* | 54.2 | 54.2 | 42.4 | 42.5 | 41.9 | 44.2 | |
IncRes-v2 | NI-TI-DIM | 64.7 | 63.9 | 61.7 | 62.1 | 60.9 | 64.5 |
ADNI-TI-DIQHM | 66.5 | 64.9 | 62.5 | 63.4 | 62.9 | 65.2 | |
ANI-TI-DIQHM | 68.7 | 66.5 | 66.7 | 65.1 | 64.0 | 67.5 | |
ANI-TI-DIQHM* | 68.9 | 67.6 | 67.0 | 66.9 | 65.8 | 68.3 | |
Res-v2-101 | NI-TI-DIM | 59.2 | 58.7 | 50.0 | 51.2 | 49.7 | 57.6 |
ADNI-TI-DIQHM | 60.0 | 60.5 | 52.9 | 53.9 | 51.3 | 58.7 | |
ANI-TI-DIQHM | 65.1 | 62.1 | 54.0 | 55.9 | 52.1 | 59.6 | |
ANI-TI-DIQHM* | 64.0 | 63.7 | 55.6 | 56.6 | 53.2 | 60.4 |
攻击组合 | Inc-v3ens3 | Inc-v3ens4 | IncRes-v2ens | HGD | R&P | NIPS-r3 | 平均 |
---|---|---|---|---|---|---|---|
TI-DIM | 83.9 | 83.2 | 78.4 | 81.9 | 81.2 | 83.6 | 82.03 |
TI-DIQHM | 86.5 | 84.8 | 80.9 | 83.1 | 82.5 | 84.1 | 83.65 |
TI-DIQHM* | 89.0 | 86.8 | 83.5 | 87.1 | 85.4 | 88.9 | 86.78 |
NI-TI-DIM | 86.4 | 84.9 | 81.5 | 83.7 | 82.9 | 84.1 | 83.95 |
ADNI-TI-DIQHM | 89.2 | 86.6 | 83.8 | 86.9 | 85.7 | 88.8 | 87.17 |
ANI-TI-DIQHM | 89.6 | 87.7 | 84.3 | 87.3 | 86.3 | 89.8 | 87.50 |
ANI-TI-DIQHM* | 91.1 | 88.7 | 84.5 | 88.9 | 87.7 | 91.2 | 88.68 |
表6 多模型黑盒攻击对经典防御方法的成功率/%
攻击组合 | Inc-v3ens3 | Inc-v3ens4 | IncRes-v2ens | HGD | R&P | NIPS-r3 | 平均 |
---|---|---|---|---|---|---|---|
TI-DIM | 83.9 | 83.2 | 78.4 | 81.9 | 81.2 | 83.6 | 82.03 |
TI-DIQHM | 86.5 | 84.8 | 80.9 | 83.1 | 82.5 | 84.1 | 83.65 |
TI-DIQHM* | 89.0 | 86.8 | 83.5 | 87.1 | 85.4 | 88.9 | 86.78 |
NI-TI-DIM | 86.4 | 84.9 | 81.5 | 83.7 | 82.9 | 84.1 | 83.95 |
ADNI-TI-DIQHM | 89.2 | 86.6 | 83.8 | 86.9 | 85.7 | 88.8 | 87.17 |
ANI-TI-DIQHM | 89.6 | 87.7 | 84.3 | 87.3 | 86.3 | 89.8 | 87.50 |
ANI-TI-DIQHM* | 91.1 | 88.7 | 84.5 | 88.9 | 87.7 | 91.2 | 88.68 |
攻击组合 | Feature Distillation | Comdefend | Randomized Smoothing | 平均 |
---|---|---|---|---|
TI-DIM | 83.1 | 78.2 | 49.9 | 70.40 |
TI-DIQHM | 84.3 | 86.9 | 59.2 | 76.80 |
TI-DIQHM* | 89.9 | 88.1 | 63.1 | 80.37 |
NI-TI-DIM | 82.1 | 84.7 | 58.6 | 75.13 |
ADNI-TI-DIQHM | 88.9 | 85.8 | 62.9 | 79.20 |
ANI-TI-DIQHM | 90.3 | 88.5 | 64.5 | 81.10 |
ANI-TI-DIQHM* | 91.2 | 89.7 | 67.4 | 82.77 |
表7 多模型黑盒攻击对较为先进的防御方法的成功率/%
攻击组合 | Feature Distillation | Comdefend | Randomized Smoothing | 平均 |
---|---|---|---|---|
TI-DIM | 83.1 | 78.2 | 49.9 | 70.40 |
TI-DIQHM | 84.3 | 86.9 | 59.2 | 76.80 |
TI-DIQHM* | 89.9 | 88.1 | 63.1 | 80.37 |
NI-TI-DIM | 82.1 | 84.7 | 58.6 | 75.13 |
ADNI-TI-DIQHM | 88.9 | 85.8 | 62.9 | 79.20 |
ANI-TI-DIQHM | 90.3 | 88.5 | 64.5 | 81.10 |
ANI-TI-DIQHM* | 91.2 | 89.7 | 67.4 | 82.77 |
1 | HEK M, ZHANGX G, RENS Q, et al. Identity mappings in deep residual networks[C]//2016 14th European Conference on Computer Vision. Amsterdam,NEP: Springer, 2016: 630-645. |
2 | HEK M, GKIOXARIG, DOLLÁRP, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. Venice,Italy: IEEE Computer Society, 2017: 2980-2988. |
3 | GOODFELLOWI J, SHLENSJ, SZEGEDYC. Explaining and harnessing adversarial examples[C]//2015 3rd International Conference on Learning Representations. San Diego,USA: Conference Track Proceedings, 2015: 1-11. |
4 | LIUY P, CHENX Y, LIUC, et al. Delving into transferable adversarial examples and black-box attacks[C]//2017 5th International Conference on Learning Representations. Toulon,France: Conference Track Proceedings, 2017: 1-24. |
5 | ATHALYEA, ENGSTROML, ILYASA, et al. Synthesizing robust adversarial examples[C]//2018 35th International Conference on Machine Learning. Stockholmsmässan,SWE: Proceedings of Machine Learning Research, 2018: 284-293. |
6 | TRAMÈRF, KURAKINA, PAPERNOTN, et al. Ensemble adversarial training: Attacks and defenses[C]//2018 6th International Conference on Learning Representations. Vancouver,CAN: Conference Track Proceedings, 2018: 1-22. |
7 | LIAOF Z, LIANGM, DONGY P, et al. Defense against adversarial attacks using high-level representation guided denoiser[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA: IEEE Computer Society, 2018: 1778-1787. |
8 | XIEC H, WANGJ Y, ZHANGZ S, et al. Mitigating adversarial effects through randomization[C]//2018 6th International Conference on Learning Representations. Vancouver,CAN: Conference Track Proceedings, 2018: 1-16. |
9 | RAGHUNATHANA, STEINHARDTJ, LIANGP. Certified defenses against adversarial examples[C]//2018 6th International Conference on Learning Representations. Vancouver,CAN: Conference Track Proceedings, 2018: 1-15. |
10 | RAUBERJ, BRENDELW, BETHGEM. Foolbox v0.8.0: A python toolbox to benchmark the robustness of machine learning models[J/OL]. [2020]. . |
11 | DONGY P, LIAOF Z, PANGT Y, et al. Boosting adversarial attacks with momentum[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA: IEEE Computer Society, 2018: 9185-9193. |
12 | NARODYTSKAN, KASIVISWANATHANS P. Simple black-box adversarial perturbations for deep networks[J/OL]. (2016-12-19)[2020].. |
13 | CHENJ B, JORDANM I. Boundary attack++: Query-efficient decision-based adversarial attack[J/OL]. [2020]. . |
14 | LINJ D, SONGC B, HEK, et al. Nesterov accelerated gradient and scale invariance for improving transferability of adversarial examples[J/OL]. [2020]. . |
15 | XIEC H, ZHANGZ S, ZHOUY Y, et al. Improving transferability of adversarial examples with input diversity[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach,USA: Computer Vision Foundation, 2019: 2730-2739. |
16 | DONGY P, PANGT Y, SUH, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach,USA: Computer Vision Foundation, 2019: 4312-4321. |
17 | KURAKINA, GOODFELLOWIAN J., BENGIOSAMY. Adversarial examples in the physical world[C]//2017 5th International Conference on Learning Representations. Toulon,France: Conference Track Proceedings, 2017: 1-14. |
18 | MAJ, YARATSD. Quasi-hyperbolic momentum and adam for deep learning[C]//2019 7th International Conference on Learning Representations. New Orleans,USA: Conference Track Proceedings, 2019: 1-38. |
19 | 贾熹滨,史佳帅. Ada_Nesterov动量方法——种具有自适应学习率的Nesterov动量方法[J]. 计算机科学与应用,2019,9:351-358. |
JIAX B, SHIJ S. Ada_Nesterov momentum algorithm—the nesterov momentum algorithm with adaptive learning rate[J]. Computer Science and Application, 2019, 9: 351-358. (in Chinese) | |
20 | KINGMAD P, BAJ. Adam: A method for stochastic optimization[C]//2015 3rd International Conference on Learning Representations. San Diego,USA: Conference Track Proceedings, 2015: 1-15. |
21 | DUCHI, JOHN, HAZAN, et al. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011, 12: 2121-2159. |
22 | SZEGEDYC, VANHOUCKEV, IOFFES, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA: IEEE Computer Society, 2016: 2818-2826. |
23 | SZEGEDYC, IOFFES, VANHOUCKEV, et al. Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//2017 31st AAAI Conference on Artificial Intelligence. San Francisco,USA: AAAI Press, 2017: 4278-4284. |
24 | LIUZ H, LIUQ, LIUT, et al. Feature distillation: DNN-Oriented JPEG compression against adversarial examples[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach,USA: Computer Vision Foundation, 2019: 860-868. |
25 | JIAX J, WEIX X, CAOX C, et al. ComDefend: An efficient image compression model to defend adversarial examples[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach,USA: Computer Vision Foundation, 2019: 6084-6092. |
26 | COHENJ M, ROSENFELDE, KOLTERJ Z. Certified adversarial robustness via randomized smoothing[C]//2019 36th International Conference on Machine Learning ICML. Long Beach,USA: Proceedings of Machine Learning Research, 2019: 1310-1320. |
[1] | 王子为, 鲁继文, 周杰. 基于自适应梯度优化的二值神经网络[J]. 电子学报, 2023, (): 1-10. |
[2] | 刘金平, 吴娟娟, 张荣, 徐鹏飞. 基于结构重参数化与多尺度深度监督的COVID-19胸部CT图像自动分割[J]. 电子学报, 2023, (): 1-9. |
[3] | 张笑宇, 沈超, 蔺琛皓, 李前, 王骞, 李琦, 管晓宏. 面向机器学习模型安全的测试与修复[J]. 电子学报, 2023, (): 1-35. |
[4] | 王炼红, 罗志辉, 林飞鹏, 李潇瑶. 采用多头注意力机制的C&RM-MAKT预测算法[J]. 电子学报, 2022, (): 1-9. |
[5] | 苏田田, 王慧敏, 张小凤. 基于多分支瓶颈结构的轻量型图像分类算法研究[J]. 电子学报, 2022, (): 1-9. |
[6] | 刘芳, 朱天贺, 苏卫星, 刘阳. 基于高斯隐马尔可夫模型的人机共享控制区域化决策算法[J]. 电子学报, 2022, 50(11): 2659-2667. |
[7] | 桑海峰, 陈旺兴, 王海峰, 王金玉. 基于多模式时空交互的行人轨迹预测模型[J]. 电子学报, 2022, 50(11): 2806-2812. |
[8] | 刘耿耿, 李泽鹏, 郭文忠, 陈国龙, 徐宁. 面向超大规模集成电路物理设计的通孔感知的并行层分配算法[J]. 电子学报, 2022, 50(11): 2575-2583. |
[9] | 魏博文, 全红艳. 基于语义与形态特征融合的语义分割网络[J]. 电子学报, 2022, 50(11): 2688-2697. |
[10] | 姚睿, 朱享彬, 周勇, 王鹏, 张艳宁, 赵佳琦. 基于重要特征的视觉目标跟踪可迁移黑盒攻击方法[J]. 电子学报, 2022, (): 1-10. |
[11] | 金紫凤, 潘思聪, 危辉. 可变环境下基于位姿变换矩阵的机器人无标定手眼协调方法[J]. 电子学报, 2022, 50(10): 2318-2328. |
[12] | 魏钰轩, 陈莹. 基于自适应层信息熵的卷积神经网络压缩[J]. 电子学报, 2022, 50(10): 2398-2408. |
[13] | 马百腾, 张士伟, 高常鑫, 桑农. 面向行为边界框生成的端到端时间全局相关网络[J]. 电子学报, 2022, 50(10): 2452-2461. |
[14] | 肖斌, 陈嘉博, 毕秀丽, 张俊辉, 李伟生, 王国胤, 马旭. 基于一维卷积神经网络与循环神经网络串联的心音分析方法[J]. 电子学报, 2022, 50(10): 2425-2432. |
[15] | 周登文, 李文斌, 李金新, 黄志勇. 一种轻量级的多尺度通道注意图像超分辨率重建网络[J]. 电子学报, 2022, 50(10): 2336-2346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||