
基于小波变换和深度网络的着陆地貌图像分类
Image Classification of Landing Landform Based on Wavelet Transform and Deep Network
针对无人机着陆地貌图像场景复杂、纹理特征丰富等问题,提出一种基于小波变换和深度网络的无人机着陆地貌图像分类算法.利用非下采样小波变换(Non-Subsampled Wavelet Transform,NSWT)的快速压缩能力,将小波变换后的前两层子图系数引入到卷积神经网络(CNN)中,压缩数据量.根据无人机着陆地貌图像的特点,采用轻量化卷积模块设计了15层卷积神经网络.通过支持向量机(SVM)实现复杂地貌场景的正确分类.实验结果表明:所提算法具有良好的特征表达能力,提升了着陆地貌图像的分类准确率.
Aiming at the problems of complex scenes and rich texture features of UAV landing landform image, a classification algorithm of UAV landing landform image based on wavelet transform and deep network is proposed. Using the fast compression capability of non-subsampled wavelet transform (NSWT), the first two layers of sub-image coefficients after wavelet transform are introduced into the convolutional neural network (CNN) to compress the amount of data. According to the characteristics of UAV landing landform image, a 15-layer convolutional neural network is designed using a lightweight convolution module. The correct classification of complex geomorphological scenes is realized by support vector machine (SVM). The experimental results show that the proposed algorithm has good feature expression ability and improves the classification accuracy of landing landform images.
非下采样小波变换 / 卷积神经网络 / 支持向量机 / 图像分类 {{custom_keyword}} /
non-subsampled wavelet transform / convolutional neural network / support vector machine / image classification {{custom_keyword}} /
表1 基于NSWT和CNN的网络结构 |
网络层 | 类型 | 卷积核 | 零填充 | 输出 |
---|---|---|---|---|
x | input | 256×256 | ||
C1 | Convolution | 5×5 | 2 | 256×256×32 |
PReLU | ||||
P1 | Max Pooling | 3×3 | 128×128 | |
C2 | Convolution | 3×3 | 1 | 128×128×64 |
C3 | Convolution | 3×3 | 1 | 128×128×64 |
PReLU | ||||
P2 | Max Pooling | 3×3 | 64×64 | |
C4 | Convolution | 3×3 | 1 | 32×32×64 |
C5 | Convolution | 3×3 | 1 | 32×32×64 |
C6 | Convolution | 1×1 | 32×32×32 | |
PReLU | ||||
P3 | Max Pooling | 3×3 | 16×16 | |
C7 | Convolution | 3×3 | 14×14×32 | |
C8 | Convolution | 3×3 | 14×14×32 | |
C9 | Convolution | 3×3 | 14×14×32 | |
PReLU | ||||
P4 | Global Mean Pooling | 3×3 | 7×7 | |
C10 | Convolution | 7×7 | 1×1×32 | |
C11 | Convolution | 1×1 | 1×1×C | |
SVM | v |
表2 每个数据集中不同方法的分类准确率 |
准确率 | Dataset1 | Dataset2 | Database |
---|---|---|---|
Method 1 | 89.73% | 88.61% | 88.75% |
Method 2 | 97.49% | 97.02% | 97.38% |
WT-CNN | 97.37% | 96.85% | 97.25% |
表3 每个数据集中不同方法的推理时间 |
推理时间(s) | Dataset1 | Dataset2 | Database |
---|---|---|---|
Method 1 | 0.033 | 0.032 | 0.031 |
Method 2 | 0.068 | 0.061 | 0.063 |
WT-CNN | 0.036 | 0.035 | 0.034 |
表4 每个数据集中不同方法的分类准确率 |
准确率 | Dataset1 | Dataset2 | Database |
---|---|---|---|
WT-CNN(FC) | 95.79% | 95.28% | 95.83% |
WT-CNN(SVM) | 97.37% | 96.85% | 97.25% |
表5 每个数据集中不同方法的推理时间 |
推理时间(s) | Dataset1 | Dataset2 | Database |
---|---|---|---|
WT-CNN(FC) | 0.079 | 0.073 | 0.075 |
WT-CNN(SVM) | 0.043 | 0.039 | 0.041 |
表6 现有算法在不同数据集的分类性能比较 |
算法 | Dataset1 | Dataset2 | Database |
---|---|---|---|
SAE-SVM | 86.26% | 85.45% | 88.97% |
CRF | 89.07% | 89.16% | 92.46% |
VGG-16 | 91.47% | 89.78% | 89.98% |
ResNet | 94.43% | 93.63% | 93.64% |
DenseNet | 96.03% | 95.46% | 95.97% |
DCT-CNN | 94.38% | 94.65% | 95.76% |
WT-CNN | 97.37% | 96.85% | 97.25% |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
方旭, 王光辉, 杨化超,等. 结合均值漂移分割与全卷积神经网络的高分辨遥感影像分类[J]. 激光与光电子学进展, 2018, 55(2):446 - 454.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
徐婷婷, 吉晓东, 李文华,等. 基于颜色和纹理特征的胶囊内镜图像分类[J]. 现代电子技术, 2018, 41(19):66 - 70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张慧娜,李裕梅,傅莺莺.基于Haar-CNN模型的自然场景图像分类的研究[J].四川师范大学学报(自然科学版),2017,40(01):119 - 126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李明威. 图像分类中的卷积神经网络方法研究[D].南京邮电大学,2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
刘芳, 路丽霞, 黄光伟,等.基于离散余弦变换和深度网络的地貌图像分类[J]. 光学学报, 2018, 38(6):266 - 274.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |