1 |
梅御东, 陈旭, 孙毓忠, 等. 一种基于日志信息和CNN‑ text的软件系统异常检测方法[J]. 计算机学报, 2020, 43(02): 366 - 380.
|
|
MEI Yu‑dong, CHEN Xu, SUN Yu‑zhong, et al. A method for software system anomaly detection based on log information and CNN‑Text[J]. Chinese Journal of Computers, 2020, 43(02): 366 - 380. (in Chinese)
|
2 |
闻佳, 王宏君, 邓佳, 刘鹏飞. 基于深度学习的异常事件检测[J]. 电子学报, 2020, 48(2): 308 - 313.
|
|
WEN Jia, WANG Hong‑jun, DENG Jia, LIU Peng‑fei. Abnormal event detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(2): 308 - 313. (in Chinese)
|
3 |
Pauwels E J, Ambekar O. One class classification for anomaly detection: support vector data description revisited[A]. Proceedings of the 11th Industrial Conference on Data Mining: Applications and Theoretical Aspects [C]. New York, USA: Springer, 2011. 25 - 39.
|
4 |
Zhang M, Xu B, Gong J. An anomaly detection model based on one‑class SVM to detect network intrusions[A]. Proceedings of the 11th International Conference on Mobile Ad‑hoc and Sensor Networks[C]. Shenzhen, China: IEEE, 2015. 102 - 107.
|
5 |
Erfani, Sarah M, Baktashmotlagh, Mahsa, Rajasegarar, Sutharshan. R1SVM: a randomised nonlinear approach to large‑scale anomaly detection[A]. Proceedings of the 29th AAAI Conference on Artificial Intelligence[C]. Austin, Texas, USA: AAAI, 2015. 1 - 7.
|
6 |
Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798 - 1828.
|
7 |
Sakurada M, Yairi T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[A]. Proceedings of the 2nd Workshop on Machine Learning for Sensory Data Analysis[C]. Gold Coast, Australia: ACM, 2014. 4 - 11.
|
8 |
Nicolau M, McDermott J. Learning neural representations for network anomaly detection[J]. IEEE Transactions on Cybernetics, 2018, 49(8): 3074 - 3087.
|
9 |
Akcay S, Atapour‑Abarghouei A, Breckon T P. GANomaly: Semi‑supervised anomaly detection via adversarial training[A]. Proceedings of the 14th Asian Conference on Computer Vision[C]. Perth, Australia: Springer, 2018. 622 - 637.
|
10 |
Ngo P C, Winarto A A, Kou C, et al. Fence GAN: towards better anomaly detection[A]. Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence[C]. Portland, OR, USA: IEEE, 2019. 141 - 148.
|
11 |
Jiang W, Hong Y, Zhou B, et al. A GAN‑based anomaly detection approach for imbalanced industrial time series[J]. IEEE Access, 2019, 7: 143608 - 143619.
|
12 |
Malaiya R K, Kwon D, Kim J, et al. An empirical evaluation of deep learning for network anomaly detection [A]. Proceedings of the 2018 International Conference on Computing, Networking and Communications[C]. Maui, HI, USA: IEEE, 2018. 893 - 898.
|
13 |
Zhang C, Song D, Chen Y, et al. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data[A]. Proceedings of the 34th AAAI Conference on Artificial Intelligence [C]. New York, USA: AAAI, 2019. 1409 - 1416.
|
14 |
Zong B, Song Q, Min M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[A]. Proceedings of the 6th International Conference on Learning Representations[C]. Vancouver, BC, Canada: OpenReview, 2018. 1 - 19.
|
15 |
Li D, Chen D, Jin B, et al. MAD‑GAN: Multivariate anomaly detection for time series data with generative adversarial networks[A]. Proceedings of the 28th International Conference on Artificial Neural Networks [C]. Munich, Germany: Springer, 2019. 703 - 716.
|
16 |
Kumarage T, Ranathunga S, Kuruppu C, et al. Generative adversarial networks (GAN) based anomaly detection in industrial software systems[A]. Proceedings of the 2019 Moratuwa Engineering Research Conference[C]. Moratuwa, Sri Lanka: IEEE, 2019. 43 - 48.
|
17 |
Schlegl T, Seeböck P, Waldstein S M, et al. f‑AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks[J]. Medical image analysis, 2019, 54: 30 - 44.
|
18 |
Li C, Liu H, Chen C, et al. Alice: Towards understanding adversarial learning for joint distribution matching [A]. Proceedings of the 31st Annual Conference on Neural Information Processing Systems[C]. Long Beach, USA: ACM, 2017. 5495 - 5503.
|
19 |
Sarmiento A, Irene Fondón, Iván Durán‑Díaz, et al. Centroid⁃based clustering with αβ‑divergences[J]. Entropy, 2019, 21(2): ArticleID: 196.
|
20 |
Moustafa N, Slay J. UNSW‑NB15: a comprehensive data set for network intrusion detection systems (UNSW‑NB15 network data set)[A]. Proceedings of the 2015 Military Communications and Information Systems Conference[C]. Canberra, ACT, Australia: IEEE, 2015. 1 - 6.
|
21 |
Amarnath B, Balamurugan S A A. Review on feature selection techniques and its impact for effective data classification using UCI machine learning repository dataset[J]. Journal of Engineering Science and Technology, 2016, 11(11):1639 - 1646.
|
22 |
DeCamilla J, Xia X, Wang M, et al. The multiple arrhythmia dataset evaluation database (MADAE)[J]. Journal of Electrocardiology, 2018, 51(6): S106 - S112.
|
23 |
Fujioka T, Kubota K, Mori M, et al. Efficient anomaly detection with generative adversarial network for breast ultrasound imaging[J]. Diagnostics, 2020, 10(7):ArticleID: 456.
|
24 |
Zhao H, Liu H, Hu W, et al. Anomaly detection and fault anAlysis of Wind tuRbine components based on deep learning network[J]. Renewable Energy, 2018, 127: 825 - 834.
|
25 |
Seyed‑Allaei H. Phase diagram of spiking neural networks[J]. Frontiers in Computational Neuroscience, 2015, 9: ArticleID: 19.
|