1 |
HouseWhite. Trustworthy cyberspace: strategic plan for the federal cyber security research and development program[R]. Report of the National Science and Technology Council, Executive Office of the President, 2011.
|
2 |
邬江兴. 网络空间拟态防御研究[J]. 信息安全学报, 2016, 1(4): 1-10.
|
|
WuJ X. Research on cyber mimic defense[J]. Journal of Cyber Security, 2016, 1(4): 1-10. (in Chinese)
|
3 |
王禛鹏, 扈红超, 程国振. 一种基于拟态安全防御的DNS框架设计[J]. 电子学报, 2017, 45(11): 2705-2714.
|
|
WangZ P, HuH C, ChengG Z. A DNS architecture based on mimic security defense[J]. Acta Electronica Sinica, 2017, 45(11): 2705-2714. (in Chinese)
|
4 |
王伟, 曾俊杰, 李光松, 等. 动态异构冗余系统的安全性分析[J]. 计算机工程, 2018, 44(10): 42-45, 50.
|
|
WangW, ZengJ J, LiG S, et al. Security analysis of dynamic heterogeneous redundant system[J]. Computer Engineering, 2018, 44(10): 42-45, 50. (in Chinese)
|
5 |
郭威, 邬江兴, 张帆, 等. 基于自动机理论的网络攻防模型与安全性能分析[J]. 信息安全学报, 2016, 1(4): 29-39.
|
|
GuoW, WuJ X, ZhangF, et al. A cyberspace attack and defense model with security performance analysis based on automata theory[J]. Journal of Cyber Security, 2016, 1(4):29-39. (in Chinese)
|
6 |
朱维军, 郭渊博, 黄伯虎. 动态异构冗余结构的拟态防御自动机模型[J]. 电子学报, 2019, 47(10):2025-2031.
|
|
ZhuW J, GuoY B, HuangB H. A mimic defense automaton model of dynamic heterogeneous redundancy structures[J]. Acta Electronica Sinica, 2019, 47(10): 2025-2031.(in Chinese)
|
7 |
任权, 贺磊, 邬江兴. 基于离散马尔可夫链的不同抗干扰系统模型分析[J]. 网络与信息安全学报, 2018, 4(4): 30-37.
|
|
RenQ, HeL, WuJ X. Analysis of different anti-interference system models based on discrete time Markov chain[J]. Chinese Journal of Network and Information Security, 2018, 4(4): 30-37. (in Chinese)
|
8 |
张兴明, 顾泽宇, 魏帅, 等. 拟态防御马尔可夫博弈模型及防御策略选择[J].通信学报, 2018, 39(10): 143-154.
|
|
ZhangX M, GuZ Y, WeiS, et al. Markov game modeling of mimic defense and defense strategy determination[J]. Journal on Communications, 2018, 39(10): 143-154. (in Chinese)
|
9 |
李千目, 桑笑楠, 王仕豪, 等. 一种面向拟态防御架构的安全性分析方法[P].中国专利: CN110830462A. 2020-02-21.
|
10 |
ZhangM Y, WangL Y, JajodiaS, et al. Network diversity: A security metric for evaluating the resilience of networks against zero-day attacks[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(5): 1071-1086.
|
11 |
MiguelG, BessaniA, NevesN. Lazarus: Automatic management of diversity in BFT systems[A]. Proceedings of the 20th International Middleware Conference[C]. New York, USA: ACM, 2019. 241-254.
|
12 |
KaterinaG P, WangF Y, WangR, et al. Characterizing intrusion tolerant systems using a state transition model[A]. Proceedings DARPA Information Survivability Conference and Exposition II[C]. Anaheim, USA: IEEE, 2001. 211-221.
|
13 |
LuoZ Y, YangX, SunG L, et al. Study of two kinds of analysis methods of intrusion tolerance system state transition model[J]. Review of Computer Engineering Studies, 2019, 6(1): 23-27.
|
14 |
MiguelG, BessaniA N, GashiI, et al. OS diversity for intrusion tolerance: Myth or reality?[A]. Proceedings of 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks[C]. Hong Kong, China: IEEE, 2011. 383-394.
|
15 |
MassimilianoA, ConnellW, VenkatesanS, et al. Moving target defense quantification[A]. Adversarial and Uncertain Reasoning for Adaptive Cyber Defense[C]. Switzerland AG: Springer, 2019. 94-111.
|
16 |
HongJ B, KimD S. Assessing the effectiveness of moving target defenses using Security models[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(2):163-177.
|
17 |
HongJ B, YusufE S, SeongK D, et al. Dynamic security metrics for measuring the effectiveness of moving target defense techniques[J]. Computers & Security, 2018, 79:33-52.
|
18 |
MaD H, WangL, LeiC, et al. Quantitative security assessment method based on entropy for moving target defense[A]. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security[C]. New York, USA: ACM, 2017. 920-922.
|
19 |
HoomanA, JinB H, JulianJ J, et al. Comprehensive security assessment of combined MTD techniques for the cloud[A]. Proceedings of the 5th ACM Workshop on Moving Target Defense[C]. New York, USA: ACM, 2018. 11-20.
|
20 |
BrantA C, CorporationT M, ZiringN, et al. Common platform enumeration: Naming specification version 2.3[R]. US Department of Commerce, NIST Inter-agency Report 7695, 2011.
|
21 |
QuinlanJ R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.
|