[1] Ma H P, Simon D. Evolutionary Computation With Biogeography-Based Optimization [M]. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2017.
[2] Ismail A M, Mohamad M S, Abdul Majid H, et al. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways [J]. Biosystems, 2017, 162: 81-89.
[3] Si W, Qin B Y, Li Q Q, et al. A novel adaptive wavelet threshold estimation based on hybrid particle swarm optimization for partial discharge signal denoising [J]. Optik, 2019, 181: 175-184.
[4] S, ahin M, Kelleg z T. A new mixed-integer linear programming formulation and particle swarm optimization based hybrid heuristic for the problem of resource investment and balancing of the assembly line with multi-manned workstations [J]. Computers & Industrial Engineering, 2019, 133: 107-120.
[5] 邓先礼, 魏波, 曾辉, 等. 基于多种群的自适应迁移PSO算法[J]. 电子学报, 2018, 46(8): 1858-1865. Deng X L, Wei B, Zeng H, et al. A multi-population based self-adaptive migration PSO [J]. Acta Electronica Sinica, 2018, 46(8): 1858-1865. (in Chinese)
[6] 孙辉, 邓志诚, 赵嘉, 等. 混合均值中心反向学习粒子群优化算法[J]. 电子学报, 2019, 47(9): 1809-1818. Sun H, Deng Z C, Zhao J, et al. Hybrid mean center opposition-based learning particle swarm optimization [J]. Acta Electronica Sinica, 2019, 47(9): 1809-1818. (in Chinese)
[7] García-Ródenas R, Linares L J, López-Gómez J A. A memetic chaotic gravitational search algorithm for unconstrained global optimization problems [J]. Applied Soft Computing, 2019, 79: 14-29.
[8] Krawczak M, Szkatuła G. On matching of intuitionistic fuzzy sets [J]. Information Sciences, 2020, 517: 254-274.
[9] Konstantinidis A, Pericleous S, Charalambous C. Meta-Lamarckian learning in multi-objective optimization for mobile social network search [J]. Applied Soft Computing, 2018, 67: 70-93.
[10] 王毅, 刘三阳, 张文, 等. 属性权重不确定的直觉模糊多属性决策的威胁评估方法[J]. 电子学报, 2014, 42(12): 2509-2514. Wang Y, Liu S Y, Zhang W, et al. Threatassessment method with uncertain attribute weight based on intuitionistic fuzzy multi-attribute decision [J]. Acta Electronica Sinica, 2014, 42(12): 2509-2514. (in Chinese)
[11] Yang X S, Deb S. Cuckoo search via L'evy flights [A]. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) Computing (NABIC'09) [C]. Coimbatore, India: IEEE, 2009. 210-214.
[12] Meng X B, Liu Y, Gao X Z, et al. A new bio-inspired algorithm: Chicken swarm optimization [A]. Advances in Swarm Intelligence [C]. Hefei, China: Springer, 2014. 86-94.
[13] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69: 46-61.
[14] Mirjalili S, Lewis A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51-67.
[15] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms [J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. |