
基于相位调制器的光子射频自干扰消除系统
Photonic Radio Frequency Self-Interference Cancellation System Based on Phase Modulators
针对带内全双工(In-band Full Duplex, IBFD)电子系统的收发机自干扰问题,提出了一种基于相位调制器的光子射频自干扰消除系统.利用两个相位调制器在萨格纳克(Sagnac)环中分别实现接收信号和本地参考干扰信号的调制,通过偏振控制最终可在光域中消除自干扰信号.实验结果表明,所提方案最终可以实现超过45dB的单频干扰消除和超过25dB的宽带干扰消除,系统的动态范围可达99.4dB·Hz2/3.
To solve the problem of transceiver interference in the in-band full duplex (IBFD) system, a photonic radio frequency interference cancellation system based on phase modulators is proposed. Two phase modulators are used in a Sagnac loop to realize the modulation of the received signal and the local reference interference signal. Proper polarization control in the optical domain can finally cancel the self-interference signal. Experimental results show that the proposed scheme can achieve a single frequency interference suppression of more than 45 dB and a broadband interference suppression of more than 25 dB. The dynamic range of the system can reach 99.4 dB·Hz2/3.
微波光子 / 自干扰消除 / 相位调制器 / 萨格纳克环 {{custom_keyword}} /
microwave photonics / self-interference cancellation / phase modulator / Sagnac loop {{custom_keyword}} /
表1 实验参数设置表 |
参数 | 取值 |
---|---|
激光器波长 | 1549.14nm |
激光器功率 | 16dBm |
激光器相对强度噪声 | -155dB/Hz |
激光器线宽 | 1MHz |
调制器半波电压 | 4.2V |
调制器差损 | <4dB |
光滤波器波长 | 1260~1650nm |
光滤波器3dB带宽 | 5nm |
EDFA输出功率 | 15dBm |
EDFA噪声系数 | <5dB |
PD响应度 | 0.7A/W |
表2 本方案与现有方案对比 |
参考文献 | 工作频率 | 干扰消除量 | SFDR | 优势 | 限制 |
---|---|---|---|---|---|
[19] | 0.9~2.4GHz | 单频:> 65dB 宽带:> 30dB | 未测试 | 干扰消除量大,电吸收调制器容易实现集成 | 光纤支路、可调光衰减器及电延迟线必须严格匹配;电吸收调制器的啁啾明显 |
[23] | 8~12.4GHz | 单频:> 40dB 宽带:>22dB | 单边带调制频谱效率高;抑制了周期性功率衰落 | 存在直流漂移,系统工作频率范围有限 | |
[27] | 0.7~4.8GHz | 宽带:>37dB | 结构简单,低频宽带干扰抑制量大,存在反馈回路,可以实时减少干扰 | 直调激光器带宽有限;光延迟线和可调光衰减器响应速度慢;双光源必须严格相干 | |
[28] | 0.7~1.1GHz | 单频:>56dB 宽带:>38dB | 采用反馈回路结合算法处理,在消除干扰的同时最大化有用信号功率 | 双光源必须严格相干;两路光纤的衰减和延时必须严格匹配 | |
本文 | 5~20GHz | 单频:>45dB 宽带:>25dB | 99.4dB·Hz2/3 | 无直流漂移,未使用延时模块,工作频率宽,可实现天线拉远 | 偏振不稳定 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
李美玲, 李莹,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
吴翔宇, 沈莹, 唐友喜. 室内环境下2.6GHz同时同频全双工自干扰信道测量与建模[J]. 电子学报, 2015, 43(1): 1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
冯文江, 刘国岭, 孔乾坤. 非正交全双工双向中继系统差错性能分析[J]. 电子学报, 2018, 46(6): 120-126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
赵季红, 何强, 曲桦, 等. 基于天线消除的非线性自干扰消除全双工通信[J]. 计算机工程与设计, 2017, 38(3): 591-594.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
吴飞, 邵士海, 唐友喜. 一种基于多天线波束成形的全双工自干扰抵消算法[J]. 电子学报, 2017, 45(1): 8-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
刘建成, 全厚德, 赵宏志,等. 基于迭代变步长LMS的数字域自干扰对消[J]. 电子学报, 2016, 44(7): 1530-1538.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
潘时龙, 张方正, 叶星炜,等. 基于微波光子技术的实时高分辨雷达成像[J]. 上海航天, 2018, 35(6): 46-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
郑小平, 华楠. 光网络30年: 回顾与展望[J]. 电信科学, 2016, 32(5): 24-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |