电子学报 ›› 2021, Vol. 49 ›› Issue (10): 1900-1907.DOI: 10.12263/DZXB.20201164
所属专题: 无线光通信及其组网技术
史芳静, 樊养余, 王鑫圆, 高永胜
收稿日期:
2020-10-20
修回日期:
2021-01-18
出版日期:
2021-10-25
发布日期:
2021-10-25
作者简介:
基金资助:
Fang-jing SHI, Yang-yu FAN, Xin-yuan WANG, Yong-sheng GAO
Received:
2020-10-20
Revised:
2021-01-18
Online:
2021-10-25
Published:
2021-10-25
摘要:
针对带内全双工(In-band Full Duplex, IBFD)电子系统的收发机自干扰问题,提出了一种基于相位调制器的光子射频自干扰消除系统.利用两个相位调制器在萨格纳克(Sagnac)环中分别实现接收信号和本地参考干扰信号的调制,通过偏振控制最终可在光域中消除自干扰信号.实验结果表明,所提方案最终可以实现超过45dB的单频干扰消除和超过25dB的宽带干扰消除,系统的动态范围可达99.4dB·Hz2/3.
中图分类号:
史芳静, 樊养余, 王鑫圆, 高永胜. 基于相位调制器的光子射频自干扰消除系统[J]. 电子学报, 2021, 49(10): 1900-1907.
Fang-jing SHI, Yang-yu FAN, Xin-yuan WANG, Yong-sheng GAO. Photonic Radio Frequency Self-Interference Cancellation System Based on Phase Modulators[J]. Acta Electronica Sinica, 2021, 49(10): 1900-1907.
参数 | 取值 |
---|---|
激光器波长 | 1549.14nm |
激光器功率 | 16dBm |
激光器相对强度噪声 | -155dB/Hz |
激光器线宽 | 1MHz |
调制器半波电压 | 4.2V |
调制器差损 | <4dB |
光滤波器波长 | 1260~1650nm |
光滤波器3dB带宽 | 5nm |
EDFA输出功率 | 15dBm |
EDFA噪声系数 | <5dB |
PD响应度 | 0.7A/W |
表1 实验参数设置表
参数 | 取值 |
---|---|
激光器波长 | 1549.14nm |
激光器功率 | 16dBm |
激光器相对强度噪声 | -155dB/Hz |
激光器线宽 | 1MHz |
调制器半波电压 | 4.2V |
调制器差损 | <4dB |
光滤波器波长 | 1260~1650nm |
光滤波器3dB带宽 | 5nm |
EDFA输出功率 | 15dBm |
EDFA噪声系数 | <5dB |
PD响应度 | 0.7A/W |
参考文献 | 工作频率 | 干扰消除量 | SFDR | 优势 | 限制 |
---|---|---|---|---|---|
[ | 0.9~2.4GHz | 单频:> 65dB 宽带:> 30dB | 未测试 | 干扰消除量大,电吸收调制器容易实现集成 | 光纤支路、可调光衰减器及电延迟线必须严格匹配;电吸收调制器的啁啾明显 |
[ | 8~12.4GHz | 单频:> 40dB 宽带:>22dB | 单边带调制频谱效率高;抑制了周期性功率衰落 | 存在直流漂移,系统工作频率范围有限 | |
[ | 0.7~4.8GHz | 宽带:>37dB | 结构简单,低频宽带干扰抑制量大,存在反馈回路,可以实时减少干扰 | 直调激光器带宽有限;光延迟线和可调光衰减器响应速度慢;双光源必须严格相干 | |
[ | 0.7~1.1GHz | 单频:>56dB 宽带:>38dB | 采用反馈回路结合算法处理,在消除干扰的同时最大化有用信号功率 | 双光源必须严格相干;两路光纤的衰减和延时必须严格匹配 | |
本文 | 5~20GHz | 单频:>45dB 宽带:>25dB | 99.4dB·Hz2/3 | 无直流漂移,未使用延时模块,工作频率宽,可实现天线拉远 | 偏振不稳定 |
表2 本方案与现有方案对比
参考文献 | 工作频率 | 干扰消除量 | SFDR | 优势 | 限制 |
---|---|---|---|---|---|
[ | 0.9~2.4GHz | 单频:> 65dB 宽带:> 30dB | 未测试 | 干扰消除量大,电吸收调制器容易实现集成 | 光纤支路、可调光衰减器及电延迟线必须严格匹配;电吸收调制器的啁啾明显 |
[ | 8~12.4GHz | 单频:> 40dB 宽带:>22dB | 单边带调制频谱效率高;抑制了周期性功率衰落 | 存在直流漂移,系统工作频率范围有限 | |
[ | 0.7~4.8GHz | 宽带:>37dB | 结构简单,低频宽带干扰抑制量大,存在反馈回路,可以实时减少干扰 | 直调激光器带宽有限;光延迟线和可调光衰减器响应速度慢;双光源必须严格相干 | |
[ | 0.7~1.1GHz | 单频:>56dB 宽带:>38dB | 采用反馈回路结合算法处理,在消除干扰的同时最大化有用信号功率 | 双光源必须严格相干;两路光纤的衰减和延时必须严格匹配 | |
本文 | 5~20GHz | 单频:>45dB 宽带:>25dB | 99.4dB·Hz2/3 | 无直流漂移,未使用延时模块,工作频率宽,可实现天线拉远 | 偏振不稳定 |
1 | Kim D, Lee H, Hong D. A survey of in-band full-duplex transmission: from the perspective of PHY and MAC layers[J]. Communications Surveys & Tutorials IEEE, 2015, 17(4): 2017-2046. |
2 | 李美玲, 李莹, Muhaidat S, 等. 非理想干扰删除下全双工中继NOMA系统的物理层安全性能研究[J]. 电子学报, 2019, 47 (1): 183-189. |
Li M L, Li Y, Muhaidat S, et al. Physical layer security for NOMA-based full duplex relay networks with non-ideal interference cancellation[J]. Acta Electronica Sinica, 2019, 47(1):183-189. (in Chinese) | |
3 | 吴翔宇, 沈莹, 唐友喜. 室内环境下2.6GHz同时同频全双工自干扰信道测量与建模[J]. 电子学报, 2015, 43(1): 1-6. |
Wu X Y, Shen Y, Tang Y X. Measurement and modeling of co-time co-frequency full-duplex self-interference channel of the indoor environment at 2.6GHz[J]. Acta Electronica Sinica, 2015, 43(1):1-6. (in Chinese) | |
4 | 冯文江, 刘国岭, 孔乾坤. 非正交全双工双向中继系统差错性能分析[J]. 电子学报, 2018, 46(6): 120-126. |
Feng W J, Liu G L, Kong Q K. Error performance of non-orthogonal full-duplex two-way relaying systems[J]. Acta Electronica Sinica, 2018, 46(6): 120-126. (in Chinese) | |
5 | Sabharwal A, Schniter P, Guo D, et al. In-band full-duplex wireless: challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637-1652. |
6 | Hong S, Brand J, Choi J, et al. Applications of self-interference cancellation in 5G and beyond[J]. IEEE Communications Magazine, 2014, 52(2): 114-121. |
7 | Zhou J, Vhuang T H, Dinc T, et al. Integrated wideband self-interference cancellation in the RF domain for FDD and full-duplex wireless[J]. IEEE Journal of Solid-State Circuits, 2015, 50(12): 3015-3031. |
8 | 赵季红, 何强, 曲桦, 等. 基于天线消除的非线性自干扰消除全双工通信[J]. 计算机工程与设计, 2017, 38(3): 591-594. |
Zhao J H, He Q, Qu H, et al. Nonlinear self-interference cancellation algorithm based on antenna cancellation in full-duplex communication[J]. Computer Engineering and Design, 2017, 38(3): 591-594. (in Chinese) | |
9 | Venkatakrishnan S B, Alwan E A, Volakis J L. Wideband RF self-interference cancellation circuit for phased array simultaneous transmit and receive systems[J]. IEEE Access, 2018, 6: 3425-3432. |
10 | Seokbong H, Kwangseon K, Jaeho J. Modeling and analysis of full-duplex MIMO system based on the measurement of RF self-interference cancellation[A]. Symposium of the Korean Institute of Communications & Information Sciences[C]. Korean: [s.n.], 2017. 1152-1153. |
11 | Askar R. Active self-interference cancellation mechanism for full-duplex wireless transceivers[A]. International Conference on Cognitive Radio Oriented Wireless Networks & Communications[C]. Oulu, Finland: IEEE, 2014. 539-544. |
12 | Quan X, Liu Y, Shao S, et al. Impacts of phase noise on digital self-interference cancellation in full-duplex communications[J]. IEEE Transactions on Signal Processing, 2017, 65(7): 1881-1893. |
13 | 吴飞, 邵士海, 唐友喜. 一种基于多天线波束成形的全双工自干扰抵消算法[J]. 电子学报, 2017, 45(1): 8-15. |
Wu F, Shao S H, Tang Y X. A novel self-interference cancellation algorithm using multi-antenna beamforming in full-duplex system[J]. Acta Electronica Sinica, 2017, 45(1): 8-15. (in Chinese) | |
14 | 刘建成, 全厚德, 赵宏志,等. 基于迭代变步长LMS的数字域自干扰对消[J]. 电子学报, 2016, 44(7): 1530-1538. |
Liu J C, Quan H D, Zhao H Z, et al. Digital self-interference cancellation based on iterative variable step-size LMS[J]. Acta Electronica Sinica, 2016, 44(7): 1530-1538. (in Chinese) | |
15 | 潘时龙, 张方正, 叶星炜,等. 基于微波光子技术的实时高分辨雷达成像[J]. 上海航天, 2018, 35(6): 46-53. |
Pan S L, Zhang F Z,Ye X W,et al. Real-time high-resolution radar imaging based on microwave photonics[J].Aerospace Shanghai, 2018, 35(6): 46-53. | |
16 | 郑小平, 华楠. 光网络30年: 回顾与展望[J]. 电信科学, 2016, 32(5): 24-33. |
Zheng X P, Hua N. Review and outlook of 30 years of optical network development[J]. Telecommunications Science, 2016, 32(5): 24-33. (in Chinese) | |
17 | Seeds A J, Hams H, Fice M J, et al. TeraHertz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3): 579-587. |
18 | Zou X, Bai W, Chen W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 2018, 36(19): 4337-4346. |
19 | Chang M P, Fok M, Homaier A, et al. Optical analog self-interference cancellation using electro-absorption modulators[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(2): 99-101. |
20 | Zhang Y H, Xiao S L, et al. Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system[J]. Optics Express, 2015, 23(26): 33205-33213. |
21 | Chen Y, Pan S L. Simultaneous wideband radio-frequency self-interference cancellation and frequency downconversion for in-band full-duplex radio-over-fiber systems[J]. Optics Letters, 2018, 43(13): 3124-3127. |
22 | Wang B, Chen Y, Chen Y. Photonic-assisted wideband frequency downconverter with self-interference cancellation and image rejection[J]. Appl Opt, 2019, 58(13): 3539-3547. |
23 | Chen Y, Yao J P. Photonic-assisted RF self-interference cancellation with improved spectrum efficiency and fiber transmission capability[J]. Journal of Lightwave Technology, 2020, 38(4): 761-768. |
24 | Chen Y. A Photonic-based wideband RF self-interference cancellation approach with fiber dispersion immunity[J]. Journal of Lightwave Technology, 2020, 38(17): 4618-4624. |
25 | Bruno J R, Lu M, Deng Y, et al. Broadband optical cosite interference cancellation[J]. Optical Engineering, 2013, 52(5): 3001-3007. |
26 | Han X, Huo B, Shao Y, et al. RF self-interference cancellation using phase modulation and optical sideband filtering[J]. IEEE Photonics Technology Letters, 2017, 29(11): 917-920. |
27 | Zhang S, Xiao S, Zhang Y, et al. Directly modulated laser-based optical radio frequency self-interference cancellation system[J]. Optical Engineering, 2016, 55(2): 026116. |
28 | Chang M P, Lee C L, Wu B. Adaptive optical self-interference cancellation using a semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2015, 27(9): 1018-1021. |
29 | Zhou Q, Feng H, Scott G, et al. Wideband co-site interference cancellation based on hybrid electrical and optical techniques[J]. Optics Letters, 2014, 39(22): 6537-6540. |
30 | Photonics Gereral. MPC-Polarization Controller. [DB/OL]. http://www.generalphotonics.com/index.php/product/mpc-polarization-controller/, 2020-10-10. |
31 | Li C, Wang J, Zheng F C, et al. Overhearing-based co-operation for two-cell network with asymmetric uplink-downlink traffics[J]. IEEE Transactions on Signal & Information Processing Over Networks, 2016, 2(3): 350-361. |
32 | Li C, Yang H J, Sun F, et al. Multi-user overhearing for cooperative two-way multi-antenna relays[J]. IEEE Transactions on Vehicular Technology, 2015, 65(5): 3792-3802. |
33 | Li C, Zhang S, Liu P, et al. Overhearing protocol design exploiting inter-cell interference in cooperative green networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 441-446. |
[1] | 史芳静, 樊养余, 王鑫圆, 康博超, 陈博, 高永胜. 基于PDM-DPMZM的大动态范围微波光子I/Q下变频系统[J]. 电子学报, 2022, 50(4): 782-788. |
[2] | 梁丁丁, 陈阳. 微波光子四倍频复合雷达信号生成及目标多维度探测[J]. 电子学报, 2022, 50(4): 796-803. |
[3] | 兰子林, 邹喜华, 白文林, 李沛轩, 李阳, 潘炜, 闫连山, 蒋灵明, 陈亮. 光载信息能量同传方案及其通信检测应用[J]. 电子学报, 2022, 50(4): 804-810. |
[4] | 王彬, 张伟锋, 赵双祥, 樊昕昱. 微波光子传感技术研究进展综述[J]. 电子学报, 2022, 50(4): 769-781. |
[5] | 荆楠, 班容键, 田立勤, 王林, 刘丰. 基于符号定时偏差补偿的过零点采样自干扰消除[J]. 电子学报, 2022, 50(2): 305-313. |
[6] | 亓林, 刘宇, 邹新海, 唐笠, 张萍. 一种基于UV-ESA自校准和高精度的PM电学测量方法[J]. 电子学报, 2020, 48(11): 2284-2288. |
[7] | 谢显中, 陈九九, 扶渝茜. 全双工信息与能量同传系统的鲁棒性预编码及高能效时隙分配方案[J]. 电子学报, 2018, 46(5): 1213-1221. |
[8] | 姜凌珂, 张琪, 潘林兵, 董玮, 张歆东, 阮圣平. 单通带微波光子滤波器泵浦响应性能研究[J]. 电子学报, 2017, 45(7): 1620-1626. |
[9] | 沈一春;章献民;陈抗生. 基于窄带光纤光栅的微波载波单边带调制[J]. 电子学报, 2005, 33(5): 871-874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||