电子学报 ›› 2022, Vol. 50 ›› Issue (2): 404-414.DOI: 10.12263/DZXB.20201186
所属专题: 压电能量采集技术
闫晓东1,2, 周公博1,2
收稿日期:
2020-10-23
修回日期:
2021-02-04
出版日期:
2022-02-25
通讯作者:
作者简介:
基金资助:
YAN Xiao-dong1,2, ZHOU Gong-bo1,2
Received:
2020-10-23
Revised:
2021-02-04
Online:
2022-02-25
Published:
2022-02-25
Corresponding author:
Supported by:
摘要:
压电式能量采集器(Piezoelectric Energy Harvester,PEH)固定方式的改变会直接影响其发电性能,而传统悬臂梁固定方式(Cantilever Beam Fixed Mode,CBFM)调频范围窄且发电性能较差.为了使PEH的发电性能最大化,提出了一种适用于任意尺寸压电片的中间梁固定方式(Intermediate Beam Fixed Mode,IBFM).同时,通过仿真和实验的方法研究了添加不同质量块后CBFM和IBFM两种固定方式的发电性能.结果表明,在相交频带处,与CBFM相比,采用IBFM后,PEH在单位加速度条件下最大开路电压和发电功率分别平均提升了95.19%和205.88%.此外,机电耦合系数(Electromechanical coupling coefficient,EMCC)平均提升了11.60%.因此,所提出的方法可以为PEH在不同频段处固定方式的选择提供指导.
中图分类号:
闫晓东, 周公博. 中间梁方式下压电式能量采集器发电性能研究[J]. 电子学报, 2022, 50(2): 404-414.
Xiao-dong YAN, Gong-bo ZHOU . Study on Power Generation Performance of Piezoelectric Energy Harvester Under Intermediate Beam Fixed Mode[J]. Acta Electronica Sinica, 2022, 50(2): 404-414.
参数 | 基板 | PZT-5H | 质量块 |
---|---|---|---|
杨氏模量/GPa | 110 | 60.6 | — |
泊松比 | 0.324 | — | — |
密度/(kg/m3) | 8 300 | 7 500 | 8 900 |
长度/mm | 80 | 60 | 10 |
宽度/mm | 33 | 33 | 33 |
厚度/mm | 0.2 | 0.2 | — |
表1 模型参数
参数 | 基板 | PZT-5H | 质量块 |
---|---|---|---|
杨氏模量/GPa | 110 | 60.6 | — |
泊松比 | 0.324 | — | — |
密度/(kg/m3) | 8 300 | 7 500 | 8 900 |
长度/mm | 80 | 60 | 10 |
宽度/mm | 33 | 33 | 33 |
厚度/mm | 0.2 | 0.2 | — |
固定方式 | 质量块/g | fa /Hz | fr /Hz | EMCC | 平均值 |
---|---|---|---|---|---|
CBFM | 1 | 64.25 | 59 | 0.395 913 | 0.394 806 |
2 | 57 | 52.5 | 0.389 438 | ||
3 | 52 | 47.5 | 0.406 925 | ||
4 | 48 | 43.5 | 0.422 742 | ||
5 | 45 | 42 | 0.359 011 | ||
IBFM | 21 | 65 | 57 | 0.480 631 | 0.487 534 |
25 | 61 | 53 | 0.495 071 | ||
29 | 55 | 49 | 0.454 182 | ||
33 | 53 | 45 | 0.528 302 | ||
37 | 49 | 43 | 0.479 483 |
表2 2种固定方式下EMCC
固定方式 | 质量块/g | fa /Hz | fr /Hz | EMCC | 平均值 |
---|---|---|---|---|---|
CBFM | 1 | 64.25 | 59 | 0.395 913 | 0.394 806 |
2 | 57 | 52.5 | 0.389 438 | ||
3 | 52 | 47.5 | 0.406 925 | ||
4 | 48 | 43.5 | 0.422 742 | ||
5 | 45 | 42 | 0.359 011 | ||
IBFM | 21 | 65 | 57 | 0.480 631 | 0.487 534 |
25 | 61 | 53 | 0.495 071 | ||
29 | 55 | 49 | 0.454 182 | ||
33 | 53 | 45 | 0.528 302 | ||
37 | 49 | 43 | 0.479 483 |
固定方式 | 质量块/g | fa /Hz | fr /Hz | EMCC | 平均值 |
---|---|---|---|---|---|
CBFM | 1 | 47.34 | 43.64 | 0.387 565 | 0.337 755 |
2 | 42.24 | 38.95 | 0.386 924 | ||
3 | 37.7 | 35.91 | 0.304 476 | ||
4 | 34.2 | 32.57 | 0.305 041 | ||
5 | 31.53 | 30.03 | 0.304 769 | ||
IBFM | 21 | 56.61 | 52.19 | 0.387 376 | 0.376 966 |
25 | 49.71 | 45.83 | 0.387 315 | ||
29 | 45.09 | 40.24 | 0.451 171 | ||
33 | 41.64 | 39.59 | 0.309 902 | ||
37 | 38.95 | 36.50 | 0.349 064 |
表3 2种固定方式下EMCC
固定方式 | 质量块/g | fa /Hz | fr /Hz | EMCC | 平均值 |
---|---|---|---|---|---|
CBFM | 1 | 47.34 | 43.64 | 0.387 565 | 0.337 755 |
2 | 42.24 | 38.95 | 0.386 924 | ||
3 | 37.7 | 35.91 | 0.304 476 | ||
4 | 34.2 | 32.57 | 0.305 041 | ||
5 | 31.53 | 30.03 | 0.304 769 | ||
IBFM | 21 | 56.61 | 52.19 | 0.387 376 | 0.376 966 |
25 | 49.71 | 45.83 | 0.387 315 | ||
29 | 45.09 | 40.24 | 0.451 171 | ||
33 | 41.64 | 39.59 | 0.309 902 | ||
37 | 38.95 | 36.50 | 0.349 064 |
参数 | CBFM | IBFM | 提升率/% |
---|---|---|---|
开路电压 | 2.148 6 | 4.845 6 | 125.52 |
EMCC | 0.337 8 | 0.377 0 | 11.60 |
发电功率 | 0.576 4 | 2.470 4 | 328.59 |
表4 2种固定方式在相交频带处性能参数比较
参数 | CBFM | IBFM | 提升率/% |
---|---|---|---|
开路电压 | 2.148 6 | 4.845 6 | 125.52 |
EMCC | 0.337 8 | 0.377 0 | 11.60 |
发电功率 | 0.576 4 | 2.470 4 | 328.59 |
1 | FUH L, YEATMANE. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion[J]. Energy, 2017, 125: 152-161. |
2 | HANJ, HUJ, YANGY, et al. A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from ac power line[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4398-4407. |
3 | 张旭辉, 赖正鹏, 吴中华, 等. 新型双稳态压电振动俘能系统的理论建模与实验研究[J]. 振动工程学报, 2019, 32(1): 91-100. |
ZHANGX H, LAIZ P, WUZ H, et al. Theoretical modeling and experimental study of a novel bistable piezoelectric vibration energy harvesting system[J]. Journal of Vibration Engineering, 2019, 32(1): 91-100. (in Chinese) | |
4 | WANGJ L, ZHOUS X, ZHANGZ E, et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments[J]. Energy Conversion and Management, 2018, 181: 645-652. |
5 | YUJ, SESHIAA. Power optimisation by mass tuning for mems piezoelectric cantilever vibration energy harvesting[J]. Journal of Microelectromechanical Systems, 2015, 25(1): 108-117. |
6 | 罗翠线, 秦敏哲. 基于模态分离技术的3×n阵列式低频宽带压电振动发电机的设计研究[J]. 电子学报, 2020, 48(3): 554-560. |
LUOC X, QINM Z. A 3×n element piezoelectric vibration generator with low frequency and wide bandwidth exploiting modes separation technique[J]. Acta Electronica Sinica, 2020, 48(3): 554-560. (in Chinese) | |
7 | 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述[J]. 振动与冲击, 2018, 37(8): 190-199, 205. |
XUZ L, SHANX B, XIET. A review of broadband piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2018, 37(8): 190-199, 205. (in Chinese) | |
8 | ABDULA, MATHIEG, MOHANNADE, et al. Effects of proof mass geometry on piezoelectric vibration energy harvesters[J]. Sensors, 2018, 18(5): 1584. |
9 | 梁光胜, 李艺. 风车型低频压电振动能量采集器的研究与设计[J]. 压电与声光, 2018, 40(3): 423-427. |
LIANGG S, LIY. Research and design of low-frequency piezoelectric vibration energy harvester with windmill structure[J]. Piezoelectric and Acoustooptic, 2018, 40(3): 423-427. (in Chinese) | |
10 | 马天兵, 陈南南, 吴晓东, 等. Z型压电振动能量收集装置[J]. 光学精密工程, 2019, 27(9): 1968-1980. |
MAT B, CHENN N, WUX D, et al. Z-type piezoelectric vibration energy harvesting device[J]. Optical and Precision Engineering, 2019, 27(9): 1968-1980. (in Chinese) | |
11 | ALAMEHA, GRATUZEM, NABKIF. Impact of geometry on the performance of cantilever-based piezoelectric vibration energy harvesters[J]. IEEE Sensors Journal, 2019, 19(22): 10316-10326. |
12 | 白凤仙, 马慧卿, 孙建忠, 等. 悬臂梁电极长度对压电俘能电气特性的影响研究[J]. 电子学报, 2019, 47(11): 18-24. |
BAIF X, MAH Q, SUNJ Z, et al. Study of the electrode length of cantilever on electrical characteristics of piezoelectric energy harvesting[J]. Acta Electronica Sinica, 2019, 47(11): 18-24. (in Chinese) | |
13 | ZHOUG B, LIZ X, ZHUZ C, et al. A new piezoelectric bimorph energy harvester based on the vortex-induced-vibration applied in rotational machinery[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 700-709. |
14 | REZAEI-HOSSEINABDIN, TABESHA, DEHGHANIR. A topology and design optimization method for wideband piezoelectric wind energy harvesters[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2165-2173. |
15 | CHALLAV, PRASADM, SHIY, et al. A vibration energy harvesting device with bidirectional resonance frequency tenability[J]. Smart Materials & Structures, 2008, 17(1): 15035-15010. |
16 | FANK Q, CHANGJ W, CHAOF B, et al. Design and development of a multipurpose piezoelectric energy harvester[J]. Energy Conversion & Management, 2015, 96: 430-439. |
17 | KARADAGC, TOPALOGLUN. A self-sufficient and frequency tunable piezoelectric vibration energy harvester[J]. Journal of Vibration & Acoustics, 2016, 139(1): 011013.1-011013.8. |
18 | YU, L D, TANGL H, YANGT J. Piezoelectric passive self-tuning energy harvester based on a beam-slider structure[J]. Journal of Sound and Vibration, 2020, 489: 115689. |
19 | 刘兵, 虞梦琳, 谷旺, 等. 两端固支梁振动能量收集器的结构设计及优化[J]. 机械工程与自动化, 2018, (1): 1-3. |
LIUB, YUM L, GUW, et al. Structural design and optimization on double-clamp-beamed piezoelectric vibration energy collector[J]. Mechanical Engineering and Automation, 2018, (1): 1-3. (in Chinese) | |
20 | KODALIP, KRISHNAA, VARUNR, et al. Segmented electrodes for piezoelectric energy harvesters[J]. IEEE Electron Device Letters, 2014, 35(4): 485-487. |
21 | HAMANII, TIKANIR, ASSADIH, et al. Energy harvesting from moving harmonic and moving continuous mass traversing on a simply supported beam[J]. Measurement, 2020, 150: 107080. |
22 | HAOB L, ZHOUG B, ZHUZ C, et al. A study of the properties of a piezoelectric ceramic plate in the symmetric fixation mode[J]. IEEE Access, 2018, 6: 36863-36873. |
23 | LIZ X, ZHOUG B, ZHUZ C, et al. A study on the power generation capacity of piezoelectric energy harvesters with different fixation modes and adjustment methods[J]. Energies, 2016, 9(2): 98. |
[1] | 李毅, 夏银水, 王修登, 夏桦康, 郑翰泽. 基于同步电荷提取的高效多压电能俘获电路设计[J]. 电子学报, 2021, 49(8): 1625-1632. |
[2] | 陈远晟, 黄勤斌, 赵荪翀, 王浩, 王舟. 基于涡激振动的微型风能采集研究[J]. 电子学报, 2021, 49(6): 1237-1240. |
[3] | 王俊, 黄娟, 阎守国, 张碧星. 超声无线输能通道的PSPICE等效电路研究[J]. 电子学报, 2018, 46(8): 1884-1890. |
[4] | 闻心怡, 周文利, 王耘波, 高俊雄, 于军. 基于极化反转函数的铁电电容器件模型[J]. 电子学报, 2012, 40(8): 1584-1590. |
[5] | 白凤仙;董维杰;肖 磊. 压电变压器端口串并联接的电气特性分析[J]. 电子学报, 2008, 36(5): 998-1003. |
[6] | 黄以华, 符 健, 邱志明, 凌国俊. 基于TSM的压电免疫传感器 等效电路模型的研究进展[J]. 电子学报, 2008, 36(4): 744-749. |
[7] | 汪辉, 朱建军, 王国宏, C Bruynseraede, K Maex, . Cu导线表面起伏程度对早期失效的影响[J]. 电子学报, 2005, 33(8): 1516-1518. |
[8] | 杨 柳;郭小波;王泽毅. 三维寄生电感提取中一种多右端方程求解方法[J]. 电子学报, 2004, 32(11): 1770-1773. |
[9] | 曾翔君;王晓宝;杨 旭;王兆安. 基于互感模型的混合封装电力电子集成模块内 电磁干扰的研究[J]. 电子学报, 2004, 32(5): 782-786. |
[10] | 黄以华;施 俊;周康源. 圆盘形弯曲振动压电变压器等效电路及特性研究[J]. 电子学报, 2003, 31(11): 1664-1666. |
[11] | 陈 超;黄以华. 条形弯曲振动压电变压器电路模型及特性研究[J]. 电子学报, 2003, 31(8): 1190-1192. |
[12] | 方振贤;汪鹏君;刘 莹. 二值、多值和绝热电路通用的电路理论[J]. 电子学报, 2003, 31(2): 303-305. |
[13] | 黄以华;周康源;施 俊;顾 宇. 径向振动压电变压器的等效电路模型及特性研究[J]. 电子学报, 2002, 30(11): 1585-1588. |
[14] | 任天令;张武全;李春晓;陈宏毅;朱 钧;刘理天. 一个改进的用于铁电存储器设计的铁电电容宏模型[J]. 电子学报, 2001, 29(8): 1135-1137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||