1 |
Habib S T, Zahid A. An analysis of map reduce efficiency in document clustering using parallel K-means algorithm[J]. Future Computing & Informatics Journal, 2018, 3(2):200 - 209.
|
2 |
Deng H, Qin H, Sun X, et al. A K-means clustering algorithm of meliorated initial center[J]. Computer Technology and Development, 2013, 11:42 - 45.
|
3 |
贺超波, 汤庸, 张琼, 等. 基于增量式鲁棒非负矩阵分解的短文本在线聚类[J]. 电子学报, 2019, 47(5): 1086 - 1093.
|
|
He Chao-bo, Tang Yong, Zhang Qiong, et al. Short text online clustering based on incremental robust nonnegative matrix factorization [J]. Acta Electronica Sinica, 2019, 47(5): 1086 - 1093.(in Chinese)
|
4 |
Yang K, Miao R. Research on improvement of text processing and clustering algorithms in public opinion early warning system[A]. Proceedings of the 5th International Conference on Systems and Informatics[C]. NY,USA: IEEE, 2018.333 - 337.
|
5 |
Zhang X, Qiang S, Gao H, et al. A density-based method for selection of the initial clustering centers of K-means algorithm[A]. Proceedings of the 2nd Advanced Information Technology, Electronic and Automation Control Conference[C]. NY,USA: IEEE, 2017.2565 - 2568.
|
6 |
张雪松, 贾彩燕. 一种基于频繁词集表示的新文本聚类方法[J]. 计算机研究与发展, 2018, 55(1):102 - 112.
|
|
Zhang Xue-song, Jia Cai-yan. A new documents clustering method based on frequent itemsets[J]. Journal of Computer Research and Development, 2018, 55(1): 102 - 112. (in Chinese)
|
7 |
Ma H, Lei D, Zeng X, et al. Short text feature extension based on improved frequent term sets[A]. Proceedings of Intelligent Information Processing[C]. Berlin,Germany: Springer Cham, 2016.169 - 178.
|
8 |
Yang Y, Ma Z, Yang Y, et al. Multitask spectral clustering by exploring intertask correlation[J]. IEEE Transactions on Cybernetics, 2015, 45(5):1085 - 1090.
|
9 |
唐俊, 梁亮, 梁栋, 等. 基于拟Laplace谱的形状表示与聚类[J]. 华东理工大学学报, 2011, 37(6):749 - 753.
|
|
Tang Jun, Liang Liang, Liang Dong, et al. Shape representation and clustering based on quasi-Laplace spectrum[J]. Journal of East China University of Science and Technology, 2011, 37(6):749 - 753.(in Chinese)
|
10 |
Zeng M, Cai Y, Liu X, et al. Spectral-spatial clustering of hyperspectral image based on Laplacian regularized deep subspace clustering[A]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium[C]. NY,USA: IEEE, 2019. 2694 - 2697.
|
11 |
Lei X, Zheng L, Liu Z, et al. Laplacian eigenmaps for automatic story segmentation of broadcast news[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1):276 - 289.
|
12 |
Pirani M, Sundaram S. On the smallest eigenvalue of grounded Laplacian matrices[J]. IEEE Transactions on Automatic Control, 2016, 6(2):509 - 514.
|
13 |
Liu X, Xiong H, Shen N. A hybrid model of VSM and LDA for text clustering[A]. Proceedings of the 2nd IEEE International Conference on Computational Intelligence and Applications[C]. NY,USA: IEEE, 2017.230 - 233.
|
14 |
Li J, Nie F, Li X. Directly solving the original Ratiocut problem for effective data clustering[A]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing[C]. NY,USA: IEEE, 2018.2306 - 2310.
|
15 |
Marutho D, Handaka S H, Wijaya E, et al. The determination of cluster number at K-means using elbow method and purity evaluation on headline news[A]. Proceedings of International Seminar on Application for Technology of Information and Communication[C]. NY,USA: IEEE, 2018.533 - 538.
|
16 |
Xu T, Chiang H, Liu G, et al. Hierarchical K-means method for clustering large-scale advanced metering infrastructure data [J]. IEEE Transactions on Power Delivery, 2017, 32(2):609 - 616.
|
17 |
Sapkota N, Alsadoon A, Prasad P W C, et al. Data summarization using clustering and classification: spectral clustering combined with K-means using NFPH[A]. Proceedings of International Conference on Machine Learning, Big Data, Cloud and Parallel Computing[C]. NY,USA: IEEE, 2019.146 - 151.
|
18 |
Fontanini A D, Abreu J. A data-driven BIRCH clustering method for extracting typical load profiles for big data[A]. Proceedings of IEEE Power & Energy Society General Meeting [C]. NY,USA: IEEE, 2018. 1 - 5.
|
19 |
Deng D. DBSCAN clustering algorithm based on density [A]. Proceedings of 7th International Forum on Electrical Engineering and Automation [C]. NY,USA: IEEE, 2020. 949 - 953.
|