电子学报 ›› 2022, Vol. 50 ›› Issue (7): 1722-1734.DOI: 10.12263/DZXB.20201274
奚畅, 蔡志明, 袁骏
收稿日期:
2020-11-12
修回日期:
2021-04-12
出版日期:
2022-07-25
作者简介:
XI Chang, CAI Zhi-ming, YUAN Jun
Received:
2020-11-12
Revised:
2021-04-12
Online:
2022-07-25
Published:
2022-07-30
摘要:
对于粒子滤波检测前跟踪算法,在被动声纳观测量满足指数分布的情况下,本文提出一种按照系统要求的虚警概率设置检测门限的方法.首先,利用贝叶斯定理推导了后验概率比表达式;然后,设置对数后验概率比为检验统计量,通过积分运算离散化处理和Jacobian定理对其进行简化;最后,在不存在目标的情况下分析检验统计量的概率分布特性,得到一定虚警概率要求下检测门限的解析表达式,利用有目标和没有目标情况下观测单元的统计特性差异,证明了在控制虚警概率的同时可以实现对目标的检测.蒙特卡洛仿真结果表明,利用所提的门限设置方法得到的虚警概率与系统要求的虚警概率之间偏差小于0.01,检测概率大于0.95.
中图分类号:
奚畅, 蔡志明, 袁骏. 被动声纳粒子滤波检测前跟踪的检测门限设置方法[J]. 电子学报, 2022, 50(7): 1722-1734.
Chang XI, Zhi-ming CAI, Jun YUAN . A Method of Determining Detection Threshold for Particle Filter Track-Before-Detect in Passive Sonar[J]. Acta Electronica Sinica, 2022, 50(7): 1722-1734.
虚警概率设置值 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.1 |
---|---|---|---|---|---|---|---|---|---|---|
虚警概率计算值 | 0.014 0 | 0.025 6 | 0.036 7 | 0.048 4 | 0.058 4 | 0.068 4 | 0.078 9 | 0.087 4 | 0.096 9 | 0.106 0 |
检测概率计算值 | 0.998 5 | 0.980 2 | 0.968 8 | 0.957 4 | 0.970 7 | 0.996 2 | 0.981 4 | 0.967 0 | 0.985 3 | 0.989 9 |
表1 虚警概率及检测概率仿真结果
虚警概率设置值 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.1 |
---|---|---|---|---|---|---|---|---|---|---|
虚警概率计算值 | 0.014 0 | 0.025 6 | 0.036 7 | 0.048 4 | 0.058 4 | 0.068 4 | 0.078 9 | 0.087 4 | 0.096 9 | 0.106 0 |
检测概率计算值 | 0.998 5 | 0.980 2 | 0.968 8 | 0.957 4 | 0.970 7 | 0.996 2 | 0.981 4 | 0.967 0 | 0.985 3 | 0.989 9 |
虚警概率设置值 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.1 |
---|---|---|---|---|---|---|---|---|---|---|
虚警概率计算值 | 0.016 5 | 0.025 0 | 0.040 4 | 0.053 5 | 0.059 6 | 0.067 5 | 0.068 3 | 0.083 3 | 0.092 2 | 0.102 7 |
检测概率计算值 | 0.918 4 | 0.927 6 | 0.934 8 | 0.940 4 | 0.939 3 | 0.946 5 | 0.946 7 | 0.946 1 | 0.950 0 | 0.952 1 |
表2 虚警概率及检测概率计算结果
虚警概率设置值 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.1 |
---|---|---|---|---|---|---|---|---|---|---|
虚警概率计算值 | 0.016 5 | 0.025 0 | 0.040 4 | 0.053 5 | 0.059 6 | 0.067 5 | 0.068 3 | 0.083 3 | 0.092 2 | 0.102 7 |
检测概率计算值 | 0.918 4 | 0.927 6 | 0.934 8 | 0.940 4 | 0.939 3 | 0.946 5 | 0.946 7 | 0.946 1 | 0.950 0 | 0.952 1 |
1 | 杨威, 付耀文, 潘晓刚, 等. 弱目标检测前跟踪技术研究综述[J]. 电子学报, 2014, 42(9): 1786-1793. |
YANG W, FU Y W, PAN X G, et al. Track-before-detect technique for dim targets: An overview[J]. Acta Electronica Sinica, 2014, 42(9): 1786-1793. (in Chinese) | |
2 | CARLSON B D, EVANS E D, WILSON S L. Search radar detection and track with the hough transform, part I: System concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102-108. |
3 | BARNIV Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(1): 144-156. |
4 | 李涛, 吴嗣亮, 曾海彬, 等. 基于动态规划的雷达检测前跟踪新算法[J]. 电子学报, 2008, 36(9):1824-1828. |
LI T, WU S L, ZENG H B, et al. A new radar track-before-detect algorithm based on dynamic programming[J]. Acta Electronica Sinica, 2008, 36(9): 1824-1828. (in Chinese) | |
5 | SALMOND D J, BIRCH H. A particle filter for track-before-detect[C]//Proceedings of the American Control Conference. Arlington: IEEE, 2001: 3753-3760. |
6 | RUTTEN M G, GORDON N J, MASKELL S. Particle-based track-before-detect in Rayleigh noise[C]//Proceedings of Signal and Data Processing of Small Targets. Orlando: SPIE, 2004: 509-519. |
7 | RUTTEN M G, GORDON N J, MASKELL S. Recursive track-before-detect with target amplitude fluctuations[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5): 345-352. |
8 | DENG X, BI R, LIU H. Threshold setting of track-before-detect based on dynamic programming for radar target detection[C]//IET International Radar Conference. Xi'an: IET, 2013: 1-4. |
9 | GUAN X, Zhong L H, Hu D H, et al. Threshold determination for dynamic programming based track-before-detect in passive bistatic radar[C]// International Conference on Signal Processing. Hangzhou: IEEE, 2015: 1938-1943. |
10 | LIU S, CHEN X, ZENG T, et al. New analytical approach to detection threshold of a dynamic programming track-before-detect algorithm[J]. IET Radar Sonar & Navigation, 2013, 7(7): 773-779. |
11 | CAI L, CAO C, WANG Y, et al. A secure threshold of dynamic programming techniques for track-before-detect[C]//International Radar Conference. Xi'an: IET, 2013: 14-16. |
12 | 杨小军, 潘泉, 张洪才. 基于粒子滤波和似然比的联合检测与跟踪[J]. 控制与决策, 2005, 20(7): 837-840. |
YANG X J, PAN Q, ZHANG H C. Unified detection and tracking based on particle filtering and likelihood ratio methods[J]. Contral and Decision, 2005, 20(7): 837-840. (in Chinese) | |
13 | 邹丁秋, 程婷, 何子述. 一种新的基于似然比的弱目标TBD方法[J]. 雷达科学与技术, 2013(3): 305-310. |
ZOU D Q, CHENG T, HE Z S. A novel track-before-detect method for weak target based on likelihood ratio[J]. Radar Science and Technology, 2013(3): 305-310. (in Chinese) | |
14 | 吴兆平. 雷达微弱目标检测和跟踪方法研究[D]. 西安: 西安电子科技大学, 2012. |
WU Z P. Study on the Methods of Radar Dim Target Detection and Tracking[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2012. (in Chinese) | |
15 | 赵树杰, 赵建勋. 信号检测与估计理论[M]. 北京: 清华大学出版社, 2005. |
ZHAO S J, ZHAO J X. Theory of Signal Detection and Estimation[M]. Beijing: Tsinghua University Press, 2005. (in Chinese) | |
16 | 龚亚信, 杨宏文, 胡卫东, 等. 基于粒子滤波的弱目标检测前跟踪算法[J]. 系统工程与电子技术, 2007, 29(12):2143-2148. |
GONG Y X, YANG H W, HU W D, et al. Particle filter based track-before-detect algorithm for weak targets[J]. Systems Engineering and Electronics, 2007, 29(12): 2143-2148. (in Chinese) | |
17 | Kay S M. 统计信号处理基础——估计与检测理论[M]. 罗鹏飞, 等, 译. 北京: 电子工业出版社, 2003. |
Kay S M. Fundamentals of Statistical Signal Processing-Estimation and Detection Theory[M]. LUO P F, et al, Translate. Beijing: Electronic Industry Press, 2003. (in Chinese) | |
18 | 苏洲阳. 粒子滤波目标跟踪及TBD算法研究[D]. 成都: 电子科技大学, 2015. |
SU Z Y. Research on Particle Filter on Target Tracking and TBD Algorithm[D]. Chengdu: University of Electronic Science and Technology, 2015. (in Chinese) | |
19 | 卢锦, 苏洪涛, 水鹏朗. 采用粒子滤波的非相干积累检测方法[J]. 信号处理, 2015, 31(6): 652-659. |
LU J, SU H T, SHUI P L. Particle filter based non-coherent integration method for detection[J]. Journal of Signal Processing, 2015, 31(6): 652-659. (in Chinese) | |
20 | MORELANDE M R, KREUCHER C M, KASTELLA K. A Bayesian approach to multiple target detection and tracking[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1589-1604. |
21 | BRUNO M G S, MOURA J M F. Multiframe detector/tracker: optimal performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 925-945. |
22 | 焦健, 王波. 一种贝叶斯检测跟踪阈值确定方法[J]. 现代雷达, 2013, 35(8): 50-54. |
JIAO J, WANG B. A new method of choosing detection threshold in bayesian coupling of detection and tracking[J]. Modern Radar, 2013, 35(8): 50-54. (in Chinese) | |
23 | 夏双志, 戴奉周, 刘宏伟. 复高斯白噪声背景下贝叶斯检测前跟踪的检测阈值设置方法[J]. 电子与信息学报, 2013, 35(3): 524-531. |
XIA S Z, DAI F Z, LIU H W. A method of determining detection threshold for bayesian track-before-detection in white complex gaussian noise[J], Journal of Electronics & Information Technology, 2013, 35(3): 524-531. (in Chinese) | |
24 | 龚亚信, 杨宏文, 郁文贤. 检测前跟踪应用中的传感器观测数据仿真研究[J]. 系统仿真学报, 2009, 21(22):7293-7298. |
GONG Y X, YANG H W, YU W X. Study on sensor measurements simulation in track-before-detect applications [J]. Journal of System Simulation, 2009, 21(22):7293-7298. (in Chinese) | |
25 | ERFANIAN J, PASUPATHY S, GULAK G. Reduced complexity symbol detectors with parallel structures for ISI channels[J]. IEEE Transactions on Communications, 1994, 42(2/3/4): 1661-1671. |
26 | CHRISTIAN G, SIWEI Z, THOMAS J. Log-PF: Particle filtering in logarithm domain[J]. Journal of Electrical and Computer Engineering, 2018, PT.1: 1-11. |
27 | 张永利. 关于伽马分布及相关分布性质的一点研究[J]. 大学数学, 2012, 28(3): 135-140. |
ZHANG Y L. A research for character of gamma distribution and its relevant distribution[J]. College Mathematics,2012, 28(3): 135-140. (in Chinese) | |
28 | 魏宗舒. 概率论与数理统计教程[M]. 北京: 高等教育出版社, 2007: 135-137. |
WEI Z S. Probability Theory and Mathematical Statistics[M]. Beijing: Higher Education Press, 2008: 135-137.(in Chinese) | |
29 | 严琴, 李开灿. 含位置参数伽玛分布的特征函数和参数估计[J]. 长江大学学报(自然科学版), 2013, 10(4): 7-9. |
YAN Q, LI K C. Eigenfuncion and parameter estimation of gamma distrubution with location parameters[J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(4): 7-9. (in Chinese) |
[1] | 包中华, 卢建斌, 田永华, 田树森. 密集杂波背景下雷达微弱海面目标的修正Hough变换TBD检测新方法[J]. 电子学报, 2022, 50(7): 1735-1743. |
[2] | 刘晓燕, 陈亮, 焦振航, 卢祥晨. 单基站DTMB信号约束的PDR运动参数修正[J]. 电子学报, 2022, 50(4): 860-868. |
[3] | 吴孙勇, 李东升, 薛秋条, 孙希延, 蔡如华. 基于PHD滤波的雷达起伏目标检测前跟踪算法研究[J]. 电子学报, 2022, 50(3): 691-702. |
[4] | 蒋林, 向超, 朱建阳, 刘奇. 加载语义似然估计的粒子滤波重定位[J]. 电子学报, 2021, 49(2): 306-314. |
[5] | 柳超, 孙进平, 袁常顺, 王子微. Geodesic流多伯努利检测前跟踪方法[J]. 电子学报, 2020, 48(7): 1375-1379. |
[6] | 姚渭箐, 胡凡. 基于IBED和仿生算法的LT码度分布设计[J]. 电子学报, 2019, 47(2): 428-433. |
[7] | 杨小冈, 李维鹏, 马玛双. 概率框架下多特征显著性检测算法[J]. 电子学报, 2019, 47(11): 2378-2385. |
[8] | 夏楠, 王珏, 李博. 基于粒子滤波和交互多模型的移动定位方法[J]. 电子学报, 2019, 47(1): 197-203. |
[9] | 陈志敏, 吴盘龙, 薄煜明, 田梦楚, 岳聪, 顾福飞. 基于自控蝙蝠算法智能优化粒子滤波的机动目标跟踪方法[J]. 电子学报, 2018, 46(4): 886-894. |
[10] | 范舜奕, 管桦, 侯志强, 余旺盛, 戴铂. 基于多表观特征子模型更新的鲁棒视觉跟踪[J]. 电子学报, 2018, 46(2): 440-446. |
[11] | 王延江, 李蕙, 齐玉娟. 一种受人脑三阶段记忆机制启发的鲁棒运动目标跟踪方法[J]. 电子学报, 2017, 45(9): 2065-2070. |
[12] | 卢锦, 王鑫, 章为川. 基于代价参考粒子滤波的存在概率检测算法[J]. 电子学报, 2017, 45(6): 1498-1505. |
[13] | 赵兴刚, 王首勇, 郑岱堃. 一种基于信息几何的矩阵DP-TBD算法[J]. 电子学报, 2017, 45(4): 882-889. |
[14] | 刘龙, 樊波阳, 刘金星, 杨乐超. 面向运动目标检测的粒子滤波视觉注意力模型[J]. 电子学报, 2016, 44(9): 2235-2241. |
[15] | 吴昊, 孙晓燕, 郭玉堂, 刘路路, 沈晶. 保持粒子多样性的非退化粒子滤波方法研究[J]. 电子学报, 2016, 44(7): 1734-1741. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||