1 |
Di B, Song L, Li Y, et al. Ultra-dense LEO: Integration of satellite access networks into 5G and beyond[J]. IEEE Wireless Communications, 2019, 26(2): 62 - 69.
|
2 |
宋海丰.国外新兴低轨通信星座发展态势分析[J].国际太空,2018,(5):17 - 22.
|
|
Song Hai-feng. Analysis on situation of foreign emerging LEO communication satellite constellations[J]. Space International, 2018,(5): 17 - 22.(in Chinese)
|
3 |
Liu J, Shi Y, Fadlullah Z M, et al. Space-air-ground integrated network: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714 - 2741.
|
4 |
Zhang N, Zhang S, Yang P, et al. Software defined space-air-ground integrated vehicular networks: Challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7): 101 - 109.
|
5 |
Albulet M. Spacex non-geostationary satellite system: Technical information to supplement schedules-Attachment to fcc application sat-loa-20161115-00118[R]. Federal Commun Commission, Washington DC, USA, Tech Rep SAT-LOA-20161115-00118, 2016.
|
6 |
Del Portillo I, Cameron B G, Crawley E F. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159: 123 - 135.
|
7 |
Jun X, Lu W, Zhang G. Traffic modeling and simulation of broadband LEO satellite communication system[A].IOP Conference Series: Materials Science and Engineering[C]. IOP Publishing, 2018, 452(4): 042082.
|
8 |
Jia Z, Sheng M, Li J, et al. Joint HAP access and LEO satellite backhaul in 6G: Matching game-based approaches[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(4): 1147 - 1159.
|
9 |
Shmoys D B. Cut problems and their application to divide-and-conquer[J]. Approximation Algorithms for NP-Hard Problems, 1997: 192 - 235.
|
10 |
Shahrokhi F, Matula D W. The maximum concurrent flow problem[J]. Journal of the ACM (JACM), 1990, 37(2): 318 - 334.
|
11 |
Leighton T, Makedon F, Plotkin S, et al. Fast approximation algorithms for multicommodity flow problems[J]. Journal of Computer and System Sciences, 1995, 50(2): 228 - 243.
|
12 |
Garg N, Koenemann J. Faster and simpler algorithms for multicommodity flow and other fractional packing problems[J]. SIAM Journal on Computing, 2007, 37(2): 630 - 652.
|
13 |
Karakostas G. Faster approximation schemes for fractional multicommodity flow problems[J]. ACM Transactions on Algorithms (TALG), 2008, 4(1): 1 - 17.
|
14 |
Filsfils C, Nainar N K, Pignataro C, et al. The segment routing architecture[A].2015 IEEE Global Communications Conference (GLOBECOM)[C]. USA: IEEE, 2015. 1 - 6.
|
15 |
Davoli L, Veltri L, Ventre P L, et al. Traffic engineering with segment routing: SDN-based architectural design and open source implementation[A].2015 Fourth European Workshop on Software Defined Networks[C].USA: IEEE, 2015. 111 - 112.
|
16 |
Bhatia R, Hao F, Kodialam M, et al. Optimized network traffic engineering using segment routing[A].2015 IEEE Conference on Computer Communications (INFOCOM)[C].USA: IEEE, 2015. 657 - 665.
|
17 |
黄建洋,兰巨龙,胡宇翔,等. 一种基于分段路由的多路径流传输机制[J]. 电子学报, 2018, 46(6):1488 - 1495.
|
|
Huang Jian-yang, Lan Ju-long, Hu Yu-xiang, et al. A segment routing based multipath flow transmission mechanism[J]. Acta Electronica Sinica, 2018, 46(6):1488 - 1495.(in Chinese)
|
18 |
Liu W, Tao Y, Liu L. Load-balancing routing algorithm based on segment routing for traffic return in LEO satellite networks[J]. IEEE Access, 2019, 7: 112044 - 112053.
|
19 |
Stephen Boyd, Lieven Vandenberghe. Convex optimization[J]. IEEE Transactions on Automatic Control, 2006, 51(11):1859 - 1859.
|