1 |
Sites R L, Chernoff A, Kirk M B, et al. Binary translation[J]. Communications of the ACM, 1993, 36(2):69-81.
|
2 |
Inc Apple. About the Rosetta Translation Environment[EB/OL]., 2020.
|
3 |
Chernoff A, Herdeg M, Hookway R, et al. FX!32: A profile-directed binary translator[J]. IEEE Micro, 1998, 18(2):56-64.
|
4 |
QEMU Bellard F., a fast and portable dynamic translator[A]. Proceedings of the FREENIX Track: 2005 USENIX Annual Technical Conference[C]. Anaheim, CA, USA: USENIX, 2005. 46.
|
5 |
Hong D Y, Hsu C C, Yew P C, et al. HQEMU: a multi-threaded and retargetable dynamic binary translator on multicores[A]. Proceedings of the Tenth International Symposium on Code Generation and Optimization[C]. San Jose, New York: ACM, 2012. 104-113.
|
6 |
Altman E R, Kaeli D. Welcome to the opportunities of binary translation[J]. Computer, 2000, 33(3):40-45.
|
7 |
Shen B Y, Chen J Y, Hsu W C, et al. LLBT: an LLVM-based static binary translator[A]. Proceedings of the 2012 International Conference on Compilers, Architectures and Synthesis for Embedded Systems[C]. New York: ACM, 2012. 51-60.
|
8 |
Sivaram Krishnan, Mark Debbage, Ziesler Sebastian H, Roy Kanad, Sturges Andrew C, Prasenjit Biswas. Processor Architecture for Executing Two Different Fixed-length Instruction Sets[P]. US:US2005262329, 2005-11-24.
|
9 |
Fajardo J, Rutzig M B, Carro L, et al. Towards a multiple-ISA embedded system[J]. Journal of Systems Architecture the Euromicro Journal, 2013, 59(2):103-119.
|
10 |
Goetz John W, Mahin Stephen W, Bergkvist John J. Processor Capable of Supporting Two Distinct Instruction Set Architectures[P]. EP:EP0747808, 1996-12-11.
|
11 |
James Walter Rymarczyk, Ignatowski Michael, Heller Thomas J Jr. Multiple-core Processor Supporting Multiple Instruction Set Architectures[P]. US:US8806182, 2014-08-12.
|
12 |
Venkat A, Tullsen D M. Harnessing ISA diversity: design of a heterogeneous-ISA chip multiprocessor[A]. 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA)[C]. AvenueMinneapolis, MN, USA: IEEE, 2014. 121-132.
|
13 |
Balkind J, Lim K, Schaffner M, et al. BYOC: a" bring your own core" framework for heterogeneous-ISA research[A]. Proceedings of the Twenty-fifth International Conference on Architectural Support for Programming Languages and Operating Systems[C]. New York: ACM, 2020. 699-714.
|
14 |
Capella F M, Brandalero M, Carro L, et al. A multiple-ISA reconfigurable architecture[J]. Design Automation for Embedded Systems, 2015, 19(4): 329-344.
|
15 |
Schiavone P D, Conti F, Rossi D, et al. Slow and steady wins the race? a comparison of ultra-low-power risc-v cores for internet-of-things applications[A]. 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)[C]. Thessaloniki, Greece: IEEE, 2017. 1-8.
|
16 |
Smith J, Nair R. Virtual Machines: Versatile Platforms for Systems and Processes[M]. Amsterdam: Elsevier, 2005.
|
17 |
Waterman Andrew, Asanovi Krste. The RISC-V Instruction Set Manual Volume I: Unprivileged ISA[EB/OL]., 2019.
|