1 |
KennedyJ, EberhartR. Particle swarm optimization[A]. Proceedings of ICNN' 95 - International Conference on Neural Networks[C]. Piscataway: IEEE, 1995.1942 - 1948.
|
2 |
WangZ, CaiJ J. The path-planning in radioactive environment of nuclear facilities using an improved particle swarm optimization algorithm[J]. Nuclear Engineering and Design, 2018, 326(10) : 79 - 86.
|
3 |
LiM, ChenH, WangX D, et al. An improved particle swarm optimization algorithm with adaptive inertia weights[J]. International Journal of Information Technology & Decision Making, 2019, 18(3): 833 - 866.
|
4 |
WangY K, ChenX B. Hybrid quantum particle swarm optimization algorithm and its application [J]. Science China (Information Sciences), 2020, 63(5): 203 - 205.
|
5 |
WangF, ZhangH, LiK S, et al. A hybrid particle swarm optimization algorithm using adaptive learning strategy[J]. Information Sciences, 2018, 436(4): 162 - 177.
|
6 |
CaoL L, XuL H, GoodmanE D. A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems [J]. Information Sciences, 2018, 453(2): 463 - 485.
|
7 |
WeiG, SuY H. Dynamic multi-objective optimization of chemical process based on bare bones particle swarm optimization [J]. Chemical Engineering Transactions, 2018, 71(9): 811 - 816.
|
8 |
OuyangH B, GaoL Q, LiS, et al. Improved global-best-guided particle swarm optimization with learning operation for global optimization problems[J]. Applied Soft Computing, 2017, 52(3): 987 - 1008.
|
9 |
KrawczakM, SzkatułaG. On matching of intuitionistic fuzzy sets [J]. Information Sciences, 2020, 517(3): 254 - 274.
|
10 |
苏丁为, 周创明, 王毅. 基于直觉模糊熵的粒子群多目标优化[J]. 计算机科学, 2016, 43(8): 262 - 266.
|
|
SuD W, ZhouC M, WangY. Multi objective particle swarm optimization based on intuitionistic fuzzy entropy[J]. Computer Science, 2016, 43(8): 262 - 266. (in Chinse)
|
11 |
DokmanicI, ParhizkarR, RanieriJ, et al. Euclidean distance matrices: essential theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2015, 32(6): 12 - 30.
|
12 |
王毅, 雷英杰. 一种直觉模糊熵的构造方法 [J]. 控制与决策, 2007, 22(12): 1390 - 1394.
|
|
WangY, LeiY J. A technique for constructing intuitionistic fuzzy entropy [J]. Control and Decision, 2007, 22(12): 1390 - 1394. (in Chinse)
|
13 |
LiangJ J, QuB Y, SuganthanP N, et al. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization[R]. Zhengzhou,China:Computational Intelligence Laboratory, Zhengzhou University, 2013.
|
14 |
周凌云,丁立新, 彭虎, 强小利. 一种邻域重心反向学习的粒子群优化 算法 [J]. 电子学报, 2017, 45(11): 2815 - 2824.
|
|
ZhouL Y, DingL X, PengH, et al. Neighborhood centroid opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2017, 45(11): 2815 - 2824. (in Chinse)
|
15 |
孙辉, 邓志诚, 赵嘉, 等. 混合均值中心反向学习粒子群优化算法 [J]. 电子学报, 2019, 47 (9) : 1809 - 1818.
|
|
SunH, DengZ C, ZhaoJ, et al. Hybrid mean center opposition based learning particle swarm optimization [J]. Acta Electronica Sinica, 2019, 47(9): 1809 - 1818. (in Chinse)
|
16 |
孙骞, 高岭, 刘涛, 等. 基于熵模型的粒子群优化算法 [J]. 东南大学学报 (自然科学版), 2019, 49(6): 1088 - 1093.
|
|
SunQ, GaoL, LiuT, et al. Particle swarm optimization algorithm based on entropy model [J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1088 - 1093.
|