电子学报 ›› 2021, Vol. 49 ›› Issue (12): 2458-2467.DOI: 10.12263/DZXB.20201448
陈健瑞, 王景璟, 侯向往, 方政儒, 杜军, 任勇
收稿日期:
2020-12-17
修回日期:
2021-07-15
出版日期:
2021-12-25
作者简介:
CHEN Jian-rui, WANG Jing-jing, HOU Xiang-wang, FANG Zheng-ru, DU Jun, REN Yong
Received:
2020-12-17
Revised:
2021-07-15
Online:
2021-12-25
Published:
2021-12-25
摘要:
近年来,群体智能作为一项多学科融合的新技术在各领域的研究成果斐然,例如共享出行、蜂群无人机系统、水下多智能体平台等,但与水下场景结合的群体智能技术缺乏系统的归纳,有必要对水下群体智能技术的发展现状和趋势进行讨论和分析.本文对群体智能理论进行了详尽的分析,给出了群体智能的完整概念、具体算法以及应用领域.文中指出,为解决海洋复杂环境对探测、通信等造成的一系列困难,需要将群体智能技术应用于水下场景.本文就国内外水下群体智能技术的研究现状进行了总结,对水下群体智能存在的环境复杂、通信受限、信息获取困难、系统能力不足以及能量供应受限的难点进行了评述.针对这些难点,本文对结合群体智能理论的时变环境感知技术、传感网络设计、协同导航定位技术、路径规划技术、水下编队控制以及分布式自主决策技术进行了分析,并在文末给出水下群体智能技术未来在跨域通信、多平台异构、自主作业能力革新方面的发展趋势和展望.
中图分类号:
陈健瑞, 王景璟, 侯向往, 方政儒, 杜军, 任勇. 挺进深蓝:从单体仿生到群体智能[J]. 电子学报, 2021, 49(12): 2458-2467.
CHEN Jian-rui, WANG Jing-jing, HOU Xiang-wang, FANG Zheng-ru, DU Jun, REN Yong. Advance into Ocean: From Bionic Monomer to Swarm Intelligence[J]. Acta Electronica Sinica, 2021, 49(12): 2458-2467.
模型 | 离散/连续 | 对象 | 仿真区域 |
---|---|---|---|
Reynolds模型 | 连续 | 同质 | 无界 |
Couzin模型 | 离散 | 异质 | 无界 |
Vicsek模型 | 离散 | 同质 | 重复边界 |
表1 集群运动模型
模型 | 离散/连续 | 对象 | 仿真区域 |
---|---|---|---|
Reynolds模型 | 连续 | 同质 | 无界 |
Couzin模型 | 离散 | 异质 | 无界 |
Vicsek模型 | 离散 | 同质 | 重复边界 |
通信方式 | 电磁波通信 | 水声通信 | 激光通信 |
---|---|---|---|
载体 | 电磁波 | 声波 | 蓝绿光 |
传播速度 | 2.25×108m/s | 1940m/s | 2.25×108m/s |
频率/波长 | 3Hz~300kHz | 3Hz~97kHz | 450nm~560nm |
应用场景 | 浅水近距离通信 | 中远距离深海通信 | 对潜通信 |
优势 | 速率高,功耗低 | 距离远,衰减小 | 方向性好,速率高 |
局限 | 衰减大、距离近、天线大 | 多径效应,环境噪声,多普勒效应,速率低、时延大 | 散射现象,背景辐射,吸收效应,难以对准 |
表2 水下通信方式
通信方式 | 电磁波通信 | 水声通信 | 激光通信 |
---|---|---|---|
载体 | 电磁波 | 声波 | 蓝绿光 |
传播速度 | 2.25×108m/s | 1940m/s | 2.25×108m/s |
频率/波长 | 3Hz~300kHz | 3Hz~97kHz | 450nm~560nm |
应用场景 | 浅水近距离通信 | 中远距离深海通信 | 对潜通信 |
优势 | 速率高,功耗低 | 距离远,衰减小 | 方向性好,速率高 |
局限 | 衰减大、距离近、天线大 | 多径效应,环境噪声,多普勒效应,速率低、时延大 | 散射现象,背景辐射,吸收效应,难以对准 |
通信方式 | 电磁波通信 | 水声通信 | 激光通信 |
---|---|---|---|
调制方式 | 频移键控 相移键控 正交频分复用 多载波调制 多输入多输出 | 扩频调制 通断键控调制 脉位调制 差分脉位调制 脉冲间隔调制 | 腔内调制 强度调制 偏振调制 空间光调制 |
表3 不同通信方式的调制方法
通信方式 | 电磁波通信 | 水声通信 | 激光通信 |
---|---|---|---|
调制方式 | 频移键控 相移键控 正交频分复用 多载波调制 多输入多输出 | 扩频调制 通断键控调制 脉位调制 差分脉位调制 脉冲间隔调制 | 腔内调制 强度调制 偏振调制 空间光调制 |
难点 | 技术支撑 | 应用 |
---|---|---|
水下通信 | 跳频通信,OFDM,MIMO通信 | 海洋自组织网络,集群AUV通信 |
信息获取 | 光学成像,声学成像,磁探测技术 | 海洋科考,鱼群探测,导航定位 |
智能决策 | 分布式控制,机器学习,神经网络 | 编队控制,航线规划,智能避障 |
表4 水下群体智能技术
难点 | 技术支撑 | 应用 |
---|---|---|
水下通信 | 跳频通信,OFDM,MIMO通信 | 海洋自组织网络,集群AUV通信 |
信息获取 | 光学成像,声学成像,磁探测技术 | 海洋科考,鱼群探测,导航定位 |
智能决策 | 分布式控制,机器学习,神经网络 | 编队控制,航线规划,智能避障 |
1 | Kennedy J. Swarm Intelligence[M]. Boston: Springer, 2006. |
2 | Dorigo M, Birattari M, et al. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28 - 39. |
3 | Kennedy J, Eberhart R. Particle swarm optimization[A]. Proceedings of the IEEE International Conference on Neural Networks[C]. Piscataway, NJ: IEEE, 1995. 1942 - 1948. |
4 | Reynolds C W. Flocks, birds and schools: a distributed behavioral model[J]. Computer Graphics, 1987, 21(1): 25 - 34. |
5 | Mishra A K, et al. PSO-GWO optimized fractional order PID based hybrid shunt active power filter for power quality improvements[J]. IEEE Access, 2020, 8: 74497 - 74512. |
6 | Gandomi A H, Kashani A R. Construction cost minimization of shallow foundation using recent swarm intelligence techniques[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1099 - 1106. |
7 | Lu J, Yang C, et al. Self-tuning PID Control Scheme with Swarm Intelligence Based on Support Vector Machine[A]. 2014 IEEE International Conference on Mechatronics and Automation[C]. Piscataway, NJ: IEEE, 2014. 1554 - 1558. |
8 | Jun G. On dynamic evolution of industry agglomeration based on swarm intelligence[A]. 2008 International Seminar on Future Information Technology and Management Engineering[C]. Piscataway, NJ: IEEE, 2008. 24 - 28. |
9 | Chan K Y, Dillon T, et al. Prediction of short-term traffic variables using intelligent swarm-based neural networks[J]. IEEE Transactions on Control Systems Technology, 2013, 21(1): 263 - 274. |
10 | Renfrew D, Yu X. Traffic signal control with swarm intelligence[A]. 2009 Fifth International Conference on Natural Computation[C]. Piscataway, NJ: IEEE, 2009. 79 - 83. |
11 | Li Q, Shangguan W, et al. Traffic flow guidance and optimization of connected vehicles based on swarm intelligence[A]. 2019 Chinese Control Conference[C]. Piscataway, NJ: IEEE, 2019. 2099 - 2104. |
12 | Mukherjee A, Goswami P, et al. Adaptive particle swarm optimization based energy efficient dynamic correlation behavior of secondary nodes in cognitive radio sensor networks[J]. IET Communications, 2020, 14(10): 1658 - 1665. |
13 | 孙家泽. 群体智能算法及在三维文物虚拟拼接中的应用[D]. 西安: 西北大学, 2015. |
14 | Bharne P K, et al. Data clustering algorithms based on swarm intelligence[A]. 2011 3rd International Conference on Electronics Computer Technology[C]. Piscataway, NJ: IEEE, 2011. 407 - 411. |
15 | Jin P, Zhu Y, Hu K. A clustering algorithm for data mining based on swarm intelligence[A]. 2007 International Conference on Machine Learning and Cybernetics[C]. Piscataway, NJ: IEEE, 2007. 803 - 807. |
16 | Kusyk J, et al. AI based flight control for autonomous UAV Swarms[A]. 2018 International Conference on Computational Science and Computational Intelligence[C]. Piscataway, NJ: IEEE, 2018. 1155 - 1160. |
17 | Arnold R, Jablonski J, et al. Heterogeneous UAV multi-role swarming behaviors for search and rescue[A]. 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management[C]. Piscataway, NJ: IEEE, 2020. 122 - 128. |
18 | 李建军. 基于群体智能的多AUV协同任务分配方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
19 | 韩青. 基于纯角度观测信息的多机器人编队控制方法研究[D]. 西安: 西北工业大学, 2018. |
20 | 张守旭. 半仿生机器鱼建模与编队控制研究[D]. 西安: 西北工业大学, 2017. |
21 | Fang Z, Wang J, et al. Stochastic optimization aided energy-efficient information collection in internet of underwater things networks[J/OL]. IEEE Internet of Things Journal, 2021, DOI:10.1109/JIOT.2021.3088279. |
22 | Fang Z, Wang J, et al. AoI inspired collaborative information collection for AUV assisted internet of underwater things[J/OL]. IEEE Internet of Things Journal, 2021, DOI:10.1109/JIOT.2021.3049239. |
23 | Zhang R, Liu J. Underwater image segmentation with maximum entropy based on particle swarm optimization (PSO)[A]. First International Multi-Symposiums on Computer and Computational Sciences[C]. Piscataway, NJ: IEEE, 2006. 360 - 636. |
24 | Wei M, Bian H, et al. Mutual information re-registration of sensitive region in forward-looking sonar images combined with particle swarm optimization algorithm[J]. IEEE Access, 2021, 9: 7064 - 7075. |
25 | Rajeshwari P M, Kavitha G, et al. Swarm intelligence based segmentation for buried object scanning SONAR images[A]. 2015 IEEE Underwater Technology[C]. Piscataway, NJ: IEEE, 2015. 1 - 4. |
26 | Sun Y, Hu Y, et al. The coverage optimization method for underwater sensor network based on VF-PSO algorithm[A]. 2020 Chinese Control And Decision Conference[C]. Piscataway, NJ: IEEE, 2020. 2008 - 2013. |
27 | Su Y, Zhou Z, et al. A joint relay selection and power allocation MAC protocol for underwater acoustic sensor network[J]. IEEE Access, 2020, 8: 65197 - 65210. |
28 | Zhang H, Wang S, et al. A low complexity clustering optimization algorithm for underwater sensor networks[A]. 2016 IEEE International Conference on Signal Processing, Communications and Computing[C]. Piscataway, NJ: IEEE, 2016. 1 - 6. |
29 | Qin C, Du J, et al. A hierarchical information acquisition system for AUV assisted Internet of underwater things[J]. IEEE Access, 2020, 8: 176089 - 176100. |
30 | Qi Y, Wang B, et al. Cooperative navigation for multiple autonomous underwater vehicles with time delayed measurements[A]. 2016 IEEE Chinese Guidance, Navigation and Control Conference[C]. Piscataway, NJ: IEEE, 2016. 295 - 299. |
31 | Liu H, et al. Navigation algorithm based on PSO-BP UKF of autonomous underwater vehicle[A]. 2019 IEEE Underwater Technology[C]. Piscataway, NJ: IEEE, 2019. 1 - 4. |
32 | Zhuo W, Longjie J, et al. A path panning strategy for data acquisition task using multiple autonomous underwater vehicles[A]. OCEANS 2016-Shanghai[C]. Piscataway, NJ: IEEE, 2016. 1 - 5. |
33 | Yan S. Research on path planning of AUV based on improved ant colony algorithm[A]. 2021 4th International Conference on Artificial Intelligence and Big Data[C]. Piscataway, NJ: IEEE, 2021. 121 - 124. |
34 | Zhu D, Yang S X. Bio-inspired neural network-based optimal path planning for UUVs under the effect of ocean currents[J/OL]. IEEE Transactions on Intelligent Vehicles, 2021, DOI:10.1109/TIV.2021.3082151. |
35 | Li Y, Zhu D. Formation tracking and transformation of AUVs based on the improved particle swarm optimization algorithm[A]. 2020 Chinese Control and Decision Conference[C]. Piscataway, NJ: IEEE, 2020. 3159 - 3162. |
36 | Li J, Du X. Underactuated multi-AUV robust formation control based on virtual leader[A]. 2018 IEEE International Conference on Mechatronics and Automation[C]. Piscataway, NJ: IEEE, 2018. 1568 - 1573. |
37 | Abichandani P, Torabi S, et al. Mixed integer nonlinear programming framework for fixed path coordination of multiple underwater vehicles under acoustic communication constraints[J]. IEEE Journal of Oceanic Engineering, 2015, 40(4): 864 - 873. |
38 | Miftah E, Sayouti A. Multi-agent systems and their application to control vehicle underwater[A]. 2015 15th International Conference on Intelligent Systems Design and Applications[C]. Piscataway, NJ: IEEE, 2015. 353 - 357. |
39 | Qiuling J, Guangwen L. Formation control and obstacle avoidance algorithm of multiple autonomous underwater vehicles(AUVs) based on potential function and behavior rules[A]. 2007 IEEE International Conference on Automation and Logistics[C]. Piscataway, NJ: IEEE, 2007. 569 - 573. |
40 | 徐玉如, 苏玉民. 关于发展智能水下机器人技术的思考[J]. 舰船科学技术, 2008, 030(004):17 - 21. |
41 | Gao Y, Ye J, et al. Q-learning based on particle swarm optimization for positioning system of underwater vehicles[A]. 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems[C]. Piscataway, NJ: IEEE, 2009. 68 - 71. |
42 | Tang X, Yu F, Chen R. Path planning of underwater vehicle based on particle swarm optimization[A]. 2010 International Conference on Intelligent Control and Information Processing[C]. Piscataway, NJ: IEEE, 2010. 123 - 126. |
43 | Liu L, Bian H. Underwater visual tracking method for AUV based on PSOPF[A]. 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control[C]. Piscataway, NJ: IEEE, 2012. 985 - 989. |
44 | Cao Y, Yu W, et al. An overview of recent progress in the study of distributed multi-agent coordination[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 427 - 438. |
45 | Champion B T, Joordens M A. Underwater swarm robotics review[A]. 2015 10th System of Systems Engineering Conference[C]. Piscataway, NJ: IEEE, 2015. 111 - 116. |
46 | Mahmutoglu Y, Turk K, Tugcu E. Particle swarm optimization algorithm based decision feedback equalizer for underwater acoustic communication[A]. 2016 39th International Conference on Telecommunications and Signal Processing[C]. Piscataway, NJ: IEEE, 2016. 153 - 156. |
47 | Li J, et al. Application of simulated annealing particle swarm optimization in underwater acoustic positioning optimization[A]. OCEANS 2019-Marseille[C]. Piscataway, NJ: IEEE, 2019. 1 - 4. |
48 | Cheng E, Wu L, et al. Node selection algorithm for underwater acoustic sensor network based on particle swarm optimization[J]. IEEE Access, 2019, 7: 164429 - 164443. |
49 | 张伟, 王乃新, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(02): 289 - 297. |
50 | Guan S, Wang J, et al. MagicNet: the maritime giant cellular network[J]. IEEE Communications Magazine, 2021, 59(3): 117 - 123. |
[1] | 熊小峰, 黄淳岚, 乐光学, 戴亚盛, 杨晓慧, 杨忠明. 边缘计算中基于综合信任评价的任务卸载策略[J]. 电子学报, 2022, 50(9): 2134-2145. |
[2] | 饶宁, 许华, 蒋磊, 宋佰霖, 史蕴豪. 基于多智能体深度强化学习的分布式协同干扰功率分配算法[J]. 电子学报, 2022, 50(6): 1319-1330. |
[3] | 张涛, 张文涛, 代凌, 陈婧怡, 王丽, 魏倩茹. 基于序贯博弈多智能体强化学习的综合模块化航空电子系统重构方法[J]. 电子学报, 2022, 50(4): 954-966. |
[4] | 周泓岑, 白恒, 才振功, 蔡亮, 顾静, 汤志敏. 基于LSTM和GRNN的容器配额优化算法[J]. 电子学报, 2022, 50(2): 366-373. |
[5] | 肖硕, 黄珍珍, 张国鹏, 杨树松, 江海峰, 李天旭. 基于SAC的多智能体深度强化学习算法[J]. 电子学报, 2021, 49(9): 1675-1681. |
[6] | 冀大雄, 方文巍, 朱华, 李硕, 唐元贵, 田宇, 姚倩. 基于相对测量的水下机器人主动定位方法研究[J]. 电子学报, 2021, 49(7): 1249-1256. |
[7] | 孙全明, 曲志坚, 任崇广. 基于粒子群优化和LightGBM的情景感知多式联运推荐[J]. 电子学报, 2021, 49(5): 894-903. |
[8] | 周熙炜, 汪贵平, 王会峰, 尚宵. 车-路协同电动汽车动态无线充电的路权调度控制[J]. 电子学报, 2021, 49(5): 904-911. |
[9] | 郝诗雅, 杨媛媛, 董怡靖, 赵晓旭, 陈嘉兴. 水声传感器网络中粒子群与蒙特卡罗优化的移动定位算法[J]. 电子学报, 2021, 49(2): 292-299. |
[10] | 王毅, 李晓梦, 耿国华, 周琳, 段焱中. 基于直觉模糊熵的混合粒子群优化算法[J]. 电子学报, 2021, 49(12): 2381-2389. |
[11] | 郝少伟, 李勇军, 赵尚弘, 王蔚龙, 王星宇. 基于改进粒子群算法的多载波NOMA功率分配策略[J]. 电子学报, 2020, 48(10): 2009-2016. |
[12] | 邓先礼, 魏波, 曾辉, 桂凌, 夏学文. 基于多种群的自适应迁移PSO算法[J]. 电子学报, 2018, 46(8): 1858-1865. |
[13] | 贺利芳, 曹莉, 张刚, 易甜. 基于幂函数型随机共振的微弱信号恢复[J]. 电子学报, 2018, 46(8): 1906-1914. |
[14] | 贾枭, 席建祥, 刘光斌, 杜柏阳. 基于脉冲控制的时延异构多智能体编队控制[J]. 电子学报, 2018, 46(12): 2957-2963. |
[15] | 俞海珍, 汪鹏君, 张会红, 万凯. 基于三值多样性粒子群算法的MPRM电路综合优化[J]. 电子学报, 2017, 45(7): 1601-1607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||