电子学报 ›› 2022, Vol. 50 ›› Issue (1): 185-194.DOI: 10.12263/DZXB.20210019

所属专题: 长摘要论文

• 学术论文 • 上一篇    下一篇

分数阶低通滤波器的优化设计研究

何雪, 胡志忠   

  1. 南京航空航天大学电子信息工程学院,江苏 南京 211106
  • 收稿日期:2020-12-24 修回日期:2021-03-08 出版日期:2022-01-25
    • 作者简介:
    • 何 雪 女,1995年生,四川成都人.南京航空航天大学电子信息工程学院电路与系统专业在读硕士研究生,主要研究方向为分数阶滤波器优化设计技术. E-mail:hexue@nuaa.edu.cn
      胡志忠(通信作者) 男,1969年生,江苏张家港人.2003年获南京航空航天大学导航制导与控制专业博士学位.现为南京航空航天大学电子信息工程学院电子科学与技术系副教授.主要研究方向电子系统设计、信号检测与处理等.E-mail:hzzbme@nuaa.edu.cn

Research on Optimal Design of Fractional Order Lowpass Filters

HE Xue, HU Zhi-zhong   

  1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China
  • Received:2020-12-24 Revised:2021-03-08 Online:2022-01-25 Published:2022-01-25

摘要:

分数阶滤波器由于具备连续步进的阻带衰减速率和更大的设计自由度而受到国内外学者的广泛关注.本文提出两种符合指标要求的分数阶低通滤波器的优化设计方法,即采用Matlab优化工具箱中的Fminimax和Fgoalattain两种多目标优化函数来分别设计符合指标要求的两种不同形式传递函数的分数阶低通滤波器,通过比较通带偏差、阻带偏差以及群时延等参数,总结这两种方法所优化设计的滤波器各自的特点.给出设计实例,对其进行稳定性分析和电路仿真,并搭建电路证明了所提设计方法的有效性.

长摘要
分数阶微积分也被称作非整数阶微积分,是经典整数阶微积分理论的扩展。将分数阶微积分的概念引入到滤波电路中,即用分数阶电容替代传统整数阶电容设计的分数阶滤波器由于具备连续步进的阻带衰减速率和更大的设计自由度而受到国内外学者的广泛关注。迄今为止,研究人员采用了多种方法设计分数阶滤波器,然而对于满足工程上常用指标的分数阶滤波器的设计方法和流程却未见报道。
本文给出了满足指标要求的分数阶低通滤波器设计的数学模型,并提出两种符合指标要求的分数阶低通滤波器的优化设计方法,即采用Matlab优化工具箱中的Fminimax和Fgoalattain两种多目标优化函数来分别设计符合指标要求的两种不同形式传递函数的分数阶低通滤波器,通过比较通带偏差、阻带偏差以及群时延等参数,总结这两种方法所优化设计的滤波器各自的特点和适用场合。并结合实例说明了分数阶低通滤波器相对于整数阶低通滤波器在实际电路实现时所具有的优势。
最后本文给出设计实例,对其进行稳定性分析和PSPICE电路仿真,并搭建实际电路证明了所提设计方法的有效性。

关键词: 分数阶微积分, 分数阶滤波器, 优化设计

Abstract:

Fractional order filters have received extensive attention from scholars at home and abroad because of their continuous stepped stopband attenuation rate and greater design freedom. This paper proposes two optimization design methods for fractional order lowpass filters that meet the design specifications, that is, using two multi-objective optimization functions of Fminimax and Fgoalattain in the Matlab optimization toolbox to design fractional order lowpass filters with two different forms of transfer functions that meet the design specifications. By comparing parameters such as passband deviation, stopband deviation, and group delay, the characteristics of the filters optimized by the two methods are summarized. A design example is given, stability analysis and circuit simulation are carried out, and the circuit is built to prove the effectiveness of the proposed design methods.

Extended Abstract
Fractional calculus, also known as non-integer calculus, is an extension of the classic integer calculus theory. The concept of fractional calculus is introduced into the filter circuit, that is, fractional-order filters designed by replacing traditional integer-order capacitors with fractional-order capacitors have received extensive attention from scholars at home and abroad because of their greater design freedom and continuously stepped stopband attenuation rate. So far, researchers have adopted a variety of methods to design fractional-order filters. However, there have been no reports on the design methods and procedures of fractional-order lowpass filters that meet design specifications commonly used in engineering.
In this paper, the mathematical model of fractional-order lowpass filters that meet the specifications is given, and two optimization design methods for fractional-order lowpass filters that meet the design specifications are proposed, that is, using two multi-objective optimization functions of Fminimax and Fgoalattain in the Matlab optimization toolbox to design fractional-order lowpass filters with two different forms of transfer functions that meet the design specifications. By comparing parameters such as passband deviation, stopband deviation, and group delay, the characteristics and applicable occasions of the filters optimized by the two methods are summarized. Combined with an example, the advantages of fractional-order lowpass filters compared to integer-order lowpass filters in actual circuit implementation are illustrated.
Finally, a design example is given, stability analysis and PSPICE simulation are carried out, and the actual circuit is built to prove the effectiveness of the proposed design methods.

Key words: fractional calculus, fractional filter, optimal design

中图分类号: