1 |
XUG, SONGZ. Effects of solar scintillation on deep space communications: Challenges and prediction techniques[J]. IEEE Wireless Communications, 2019, 26(2): 10-16.
|
2 |
YUQ, MENGW, YANGM, et al. Virtual multi-beamforming for distributed satellite clusters in space information networks[J]. IEEE Wireless Communications, 2016, 23(1): 95-101.
|
3 |
WANGY, et al. Multi-resource coordinate scheduling for earth observation in space information networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(2): 268-279.
|
4 |
张玲玲. 简述空天信息传输网络的特点、现状及发展趋势[J]. 山东工业技术, 2016, (4): 140.
|
|
ZHANGLing-ling. Briefly describe the characteristics, status quo and development trend of aerospace information transmission network[J]. Shandong Industrial Technology, 2016, (4): 140. (in Chinese)
|
5 |
ZHANGX, ZHUL, LIT, et al. Multiple-user transmission in space information networks: Architecture and key techniques[J]. IEEE Wireless Communications, 2019, 26(2): 17-23.
|
6 |
NAGPALL, SAMDANIK. Project loon: Innovating the connectivity worldwide[C]//2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology(RTEICT). Sri Venkateshwara Coll Engn, Bangalore, India: IEEE, 2017: 1778-1784.
|
7 |
LUH, GUIY, JIANGX, et al. Compressed robust transmission for remote sensing services in space information networks[J]. IEEE Wireless Communications, 2019, 26(2): 46-54.
|
8 |
Naser Hossein Motlagh, et al. Low-altitude unmanned aerial vehicles-based Internet of things services: Comprehensive survey and future perspectives[J]. IEEE Internet of Things Journal, 2016, 3(6): 899-922.
|
9 |
HUBENKOV P, RAINESR A, MILLSR F, et al. Improving the global information grid's performance through satellite communications layer enhancements[J]. IEEE Communications Magazine, 2006, 44(11): 66-72.
|
10 |
HAMDIM, BOUDRIGAN, OBAIDATM S. Bandwidth-effective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking[J]. IEEE Systems Journal, 2008, 2(1): 74-82.
|
11 |
MAINEK, DEVIEUXC, SWANP. Overview of IRIDIUM satellite network[C]//Proceedings of WESCON'95. San Francisco, CA, USA: IEEE, 1995: 483.
|
12 |
吴建军, 程宇新, 梁庆林, 等. 面向未来全球化网络的欧洲ISICOM卫星通信概念系统[J]. 卫星应用, 2010, (5): 59-64.
|
|
WUJian-jun, CHENGYu-xin, LIANGQing-lin, et al. European ISICOM satellite communication concept system for future global network[J]. Satellite Applications, 2010, (5): 59-64. (in Chinese)
|
13 |
翟立君, 潘沭铭, 汪春霆. 卫星5G技术的发展和展望[J]. 天地一体化信息网络, 2021, 2(1): 1-9.
|
|
ZHAILi-jun, PANShu-ming, WANGChun-ting. Development and prospect of satellite 5G technology[J]. Space-Integrated-Ground Information Networks, 2021, 2(1): 1-9. (in Chinese)
|
14 |
ETSI TS 122 261-2018, 5G. Service requirements for next generation new services and markets(V15.6.0; 3GPP TS 22.261 version 15.6.0 Release 15)[S]. 2020-
|
15 |
|
16 |
杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39(1): 1-6.
|
|
YANGYuan-xi. Progress, contribution and challenges of compass/Beidou satellite navigation system[J]. Acta Geodaetica Et cartographica Sinica, 2010, 39(1): 1-6. (in Chinese)
|
17 |
冯伟, 唐睿, 葛宁. 星地协同智能海洋通信网络发展展望[J]. 电信科学, 2020, 36(10): 5-15.
|
|
FENGWei, TANGRui, GENing. Perspectives on coordinated satellite-terrestrial intelligent maritime communication network[J]. Telecommunications Science, 2020, 36(10): 5-15. (in Chinese)
|
18 |
LIY, WANGS, JINC, et al. A survey of underwater magnetic induction communications: Fundamental issues, recent advances, and challenges[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2466-2487.
|
19 |
许幼成, 陈涤非, 孙强. 低轨宽带通信卫星应用浅析[J]. 数字通信世界, 2020, (2): 29-30.
|
|
XUYou-cheng, CHENDi-fei, SUNQiang. Analysis on the application of low-orbit broadband communication satellites[J]. Digital Communication World, 2020, (2): 29-30. (in Chinese)
|
20 |
刘悦. “下一代铱星”系统首批10颗卫星成功发射[J]. 国际太空, 2017, (4): 52-54.
|
|
LIUYue. The first 10 satellites of iridium next launched successfully[J]. Space International, 2017, (4): 52-54. (in Chinese)
|
21 |
林莉, 左鹏, 张更新. 美国OneWeb系统发展现状与分析[J]. 数字通信世界, 2018, (9): 18, 22-23.
|
|
LINLi, ZUOPeng, ZHANGGeng-xin. Development situation and analysis of OneWeb system[J]. Digital Communication World, 2018, (9): 18, 22-23. (in Chinese)
|
22 |
孙明欣. 以信息为中心网络的缓存策略的设计与实现[D]. 北京: 北京邮电大学, 2019.
|
|
SUNMing-xin. Design and Implementation of Cache Startegy Based on Information Centric Networking[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
|
23 |
YEN, HANH, ZHAOL, et al. Uplink nonorthogonal multiple access technologies toward 5G: A survey[J]. Wireless Communications and Mobile Computing, 2018: 1-26.
|
24 |
YEN, LIX, YUH, et al. Rate-adaptive multiple access for uplink grant-free transmission[J]. Wireless Communications and Mobile Computing, 2018: 1-21.
|
25 |
ANJ, YANGK, WUJ, et al. Achieving sustainable ultra-dense heterogeneous networks for 5G[J]. IEEE Communications Magazine, 2017, 55(12): 84-90.
|
26 |
HanxiaoYU, FEIZesong, CAOCongzhe, et al. Analysis of irregular repetition spatially-coupled slotted ALOHA[J]. Sci China Inf Sci, 2019, 62(8): 18-30.
|
27 |
郭铭铭, 夏文娟, 窦建华. 基于QAM载波恢复算法的研究[J]. 现代电子技术, 2014, (16): 21-23.
|
|
GUOMing-ming, XIAWen-juan, DouJian-hua. Research on QAM-based carrier recovery method[J]. Modern Electronics Technique, 2014, (16): 21-23. (in Chinese)
|
28 |
彭钧, 郭见兵, 陈东进. 一种高阶QAM联合载波恢复算法的研究[J]. 光通信研究, 2011, (3): 20-22, 43.
|
|
PENGJun, GUOJian-bing, CHENDong-jin. Research on a union carrier recovery algorithm for high-order QAM[J]. Study on Optical Communications, 2011, (3): 20-22, 43. (in Chinese)
|
29 |
谢秋杨. 面向卫星通信高阶调制解调16-APSK算法实现研究[D]. 长沙: 湖南大学, 2012.
|
|
XIEQiu-yang. Realization Research on High Order Modulation and Demodulation Algorithm of 16-APSK for Satellite Communication[D]. Changsha: Hunan University, 2012. (in Chinese)
|
30 |
梅凡. 卫星数传系统中16APSK调制解调技术研究[D]. 北京: 中国科学院国家空间科学中心, 2016.
|
|
MeiFan. The Research of Modulation and Demodulation of 16APSK in Satelliate Data Transmission System[D]. Beijing: Center for Space Science and Applied Research Chinese Academy of Sciences, 2016. (in Chinese)
|
31 |
宫晓妍, 刘建伟, 杨友福. 基于卫星信道的APSK调制研究[J]. 遥测遥控, 2009, (6): 12-16.
|
|
GONGXiao-yan, LIUJian-wei, YANGYou-fu. Analysis of APSK modulation based on satellite channel[J]. Journal of Telemetry, Tracking, and Command, 2009, (6): 12-16. (in Chinese)
|
32 |
European Telecommunications Standards Institute. Digital video broadcasting(dvb); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications(DVB-S2X):ETSI Standard EN 302 307-2 V1.1.1[S/OL]. [2020-12].
|
33 |
SANCTISM, CIANCAE, ROSSIT, et al. Waveform design solutions for EHF broadband satellite communications[J]. IEEE Communications Magazine, 2015, 53(3): 18-23.
|
34 |
THOMPSON SteveC, AHMED AhsenU, PROKIS JohnG, et al. Constant envelope OFDM[J]. IEEE Transactions on Communications, 2008, 56(8): 1300-1312.
|
35 |
MULINDER, RAHMANT F, SACCHIC. Constant-envelope SC-FDMA for nonlinear satellite channels[C]//GLOBECOM 2013. Atlanta, GA, USA: IEEE, 2013: 2939-2944.
|
36 |
袁伟杰, 李双洋, 种若汐, 等. 面向6G物联网的分布式译码技术[J]. 电子与信息学报, 2021, 43(1): 21-27.
|
|
YUANWei-jie, LIShuang-yang, ZHONGRuo-xi, et al. A distributed decoding algorithm for 6G Internet-of-things networks[J]. Journal of Electronics and Information Technology, 2021, 43(1): 21-27. (in Chinese)
|
37 |
WANGB, CHENP, FANGY, et al. The design of vertical RS-CRC and LDPC code for ship-based satellite communications on-the-move[J]. IEEE Access, 2019, 7: 44977-44986.
|
38 |
WANGH, KIMS. Design of polar codes for run-length limited codes in visible light communications[J]. IEEE Photonics Technology Letters, 2018, 31(1): 27-30.
|
39 |
TROFIMIUKG, IAKUBAN, RETSS, et al. Fast block sequential decoding of polar codes[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10988-10999.
|
40 |
FAYYAZU U. Symbol mapping design for bit-interleaved polar-coded modulation with iterative decoding[J]. IEEE Communications Letters, 2018, 23(1): 32-35.
|
41 |
LIUJ, SHIY, FADLULLAHZ M, et al. Space-air-ground integrated network: A survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714-2741.
|
42 |
陈娅婷. 空天地一体化网络无线资源管理与传输协议优化研究[D]. 北京: 北京交通大学, 2019.
|
|
CHENYa-ting. Research on Wireless Resource Management and Transmission Protocol Optimization for Space-Air-Ground Integrated Network[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
43 |
ZHANGN, ZHANGS, YANGP, et al. Software defined space-air-ground integrated vehicular networks: Challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7): 101-109.
|
44 |
胡延楠. 软件定义网络关键技术及相关问题的研究[D]. 北京: 北京邮电大学, 2015.
|
|
HUYan-nan. Research on Key Technologies and Related Problems in Software-defined Networks[D]. Beijing: Beijing University of Posts and Telecommunications, 2015. (in Chinese)
|
45 |
靳瑾, 李娅强, 张晨, 等. 全球动态场景下非静止轨道通信星座干扰发生概率和系统可用性[J]. 清华大学学报(自然科学版), 2018, (9): 833-840.
|
|
JINJin, LIYa-qiang, ZHANGChen, et al. Occurrence probability of co-frequency interference and system availability of non-geostationary satellite system in global dynamic scene[J]. Journal of Tsinghua University(Science and Technology), 2018, (9): 833-840. (in Chinese)
|
46 |
李伊陶. 基于LEO-MSS的多层扩展网络场景下的资源分配和切换优化[D]. 合肥: 中国科学技术大学, 2020.
|
|
LIYi-tao. Resource Allocation and Handover Optimization Based on Extensible Multi-layer LEO-MSS[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese)
|
47 |
GRACED, CHENG, WHITEG P, et al. Improving the system capacity of mm-wave broadband services using multiple high altitude platforms[C]//IEEE Global Telecommunications Conference. San Francisco, CA, USA: IEEE, 2003: 169-173.
|
48 |
IBRAHIMA, ALFAA S. Using Lagrangian relaxation for radio resource allocation in high altitude platforms[J]. IEEE Transactions on Wireless Communications, 2015, 14(10): 5823-5835.
|