
空天通信网络关键技术综述
Key Technologies of Space-Air-Ground Communication Networks: A Survey
伴随信息社会向网络化、泛在化、智能化持续发展,现有地面通信网络已经无法支持日益增长的宽带业务需求、泛在海量的物联接入需求、隐蔽可靠的安全传输需求.未来通信网络要求在全球范围内实现既纵深宽广又细致入微的全方位无线接入,其进一步演进亟需突破包括网络架构和空口技术等在内的底层技术.相比于地面通信网络,空天通信网络不受地形的限制,可实现包括海洋、森林、边远地区等的立体全覆盖,可在多维度多层次尺度实现全空间范围内的信息交互,将成为满足海量异构用户泛在连接需求的关键使能技术.本文综述了空天通信网络的关键技术,首先给出了空天通信网络现有系统及未来智慧社会业务的多元化应用场景,然后从空-天-地三网、物理-网络-应用三层、有效传输-资源管理-安全防护三域出发,给出了一种空天通信网络的整体架构.本文随后从组网与接入、物理层以及资源管理与切换等角度出发分别总结了关键技术.最后,本文指出了未来空天通信网络的技术发展挑战和趋势.
With the information society continuously developing towards networking, ubiquity, and intelligence, the existing terrestrial communication network has been unable to supply the increasing demand for broadband services, ubiquitous access, and concealed and reliable transmission. The future communication network requires the realization of all-round wireless access. Its further evolution urgently needs to break through the underlying technologies including network architecture and air interface technology. Compared with the terrestrial communication networks, integrated space-air-ground communication networks can work independently of terrain, and can achieve full coverage including oceans, forests, remote areas, etc. In addition, the information interaction can also be achieved from multiple dimensions. The integrated space-air-ground communication will be one of the key technologies enabling the ubiquitous connection of enormous heterogeneous users. This paper summarizes the key technologies of aerospace communication networks. Firstly, we introduce the existing space-air-ground communication systems and the diversified application scenarios oriented for the future smart society. Secondly, an overall architecture of the integrated space-air-ground communication networks is presented from the perspectives of space-air-ground physical space, physical-network-application network structure, and effective transmission-resource management-security protection technical route. Subsequently, the key technologies are summarized such as networking and multiple access, physical layer and resource management, etc. Finally, the technical challenges and trends of future aerospace communication networks are pointed out.
空天通信网络 / 空天地一体化 / 组网接入 / 物理层技术 {{custom_keyword}} /
space-air communication networks / space-air-ground / networking and multiple access / physical layer technology {{custom_keyword}} /
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张玲玲. 简述空天信息传输网络的特点、现状及发展趋势[J]. 山东工业技术, 2016, (4): 140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
Naser Hossein Motlagh, et al. Low-altitude unmanned aerial vehicles-based Internet of things services: Comprehensive survey and future perspectives[J]. IEEE Internet of Things Journal, 2016, 3(6): 899-922.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
吴建军, 程宇新, 梁庆林, 等. 面向未来全球化网络的欧洲ISICOM卫星通信概念系统[J]. 卫星应用, 2010, (5): 59-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
翟立君, 潘沭铭, 汪春霆. 卫星5G技术的发展和展望[J]. 天地一体化信息网络, 2021, 2(1): 1-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
ETSI TS 122 261-2018, 5G. Service requirements for next generation new services and markets(V15.6.0; 3GPP TS 22.261 version 15.6.0 Release 15)[S]. 2020-
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39(1): 1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
冯伟, 唐睿, 葛宁. 星地协同智能海洋通信网络发展展望[J]. 电信科学, 2020, 36(10): 5-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
许幼成, 陈涤非, 孙强. 低轨宽带通信卫星应用浅析[J]. 数字通信世界, 2020, (2): 29-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
刘悦. “下一代铱星”系统首批10颗卫星成功发射[J]. 国际太空, 2017, (4): 52-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
林莉, 左鹏, 张更新. 美国OneWeb系统发展现状与分析[J]. 数字通信世界, 2018, (9): 18, 22-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
孙明欣. 以信息为中心网络的缓存策略的设计与实现[D]. 北京: 北京邮电大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
郭铭铭, 夏文娟, 窦建华. 基于QAM载波恢复算法的研究[J]. 现代电子技术, 2014, (16): 21-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
彭钧, 郭见兵, 陈东进. 一种高阶QAM联合载波恢复算法的研究[J]. 光通信研究, 2011, (3): 20-22, 43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
谢秋杨. 面向卫星通信高阶调制解调16-APSK算法实现研究[D]. 长沙: 湖南大学, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
梅凡. 卫星数传系统中16APSK调制解调技术研究[D]. 北京: 中国科学院国家空间科学中心, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
宫晓妍, 刘建伟, 杨友福. 基于卫星信道的APSK调制研究[J]. 遥测遥控, 2009, (6): 12-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
European Telecommunications Standards Institute. Digital video broadcasting(dvb); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications(DVB-S2X):ETSI Standard EN 302 307-2 V1.1.1[S/OL]. [2020-12].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
袁伟杰, 李双洋, 种若汐, 等. 面向6G物联网的分布式译码技术[J]. 电子与信息学报, 2021, 43(1): 21-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
陈娅婷. 空天地一体化网络无线资源管理与传输协议优化研究[D]. 北京: 北京交通大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
胡延楠. 软件定义网络关键技术及相关问题的研究[D]. 北京: 北京邮电大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
靳瑾, 李娅强, 张晨, 等. 全球动态场景下非静止轨道通信星座干扰发生概率和系统可用性[J]. 清华大学学报(自然科学版), 2018, (9): 833-840.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
李伊陶. 基于LEO-MSS的多层扩展网络场景下的资源分配和切换优化[D]. 合肥: 中国科学技术大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |