1 |
GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii, USA: AAAI, 2019, 33: 3656-3663.
|
2 |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann, 2018: 3634-3640.
|
3 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]//International Conference on Learning Representations. Vancouver, Canada: Vancouver Convention Center, 2018: 1-16.
|
4 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//International Conference on Learning Representations. Vancouver, Canada. 2018: 1-12.
|
5 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Annual Conference on Neural Information Processing Systems(NeurIPS). Long Beach, USA: MIT Press, 2017: 5998-6008.
|
6 |
MOREIRA-MATIAS L, GAMA J, FERREIRAM, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-1402.
|
7 |
SHEKHAR S, WILLIAMS B M. Adaptive seasonal time series models for forecasting short-term traffic flow[J]. Transportation Research Record, 2007, 2024(1): 116-125.
|
8 |
胡文斌, 聂聪, 邱振宇,等. 一种城市交通路网实时动态多路口路径导航量子搜索方法[J]. 电子学报, 2018, 46(1): 104-109.
|
|
HU W B, NIE C, QIU Z Y, et al. A route guidance method based on quantum searching for real-time dynamic multi-intersections in urban traffic networks[J]. Acta Electronica Sinica, 2018, 46(1): 104-109. (in Chinese)
|
9 |
ZHANG J, ZHENG Y, QI D, et al. DNN-based prediction model for spatio-temporal data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame, USA: ACM, 2016: 1-4.
|
10 |
ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI, 2017: 1655-1661.
|
11 |
PAN B, DEMIRYUREK U, SHAHABI C. Utilizing real-world transportation data for accurate traffic prediction[C]//2012 IEEE 12th International Conference on Data Mining. Brussels, Belgium: IEEE, 2012: 595-604.
|
12 |
WU F, WANG H, LI Z. Interpreting traffic dynamics using ubiquitous urban data[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame, USA: ACM, 2016: 1-4.
|
13 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, USA: IEEE, 2016: 770-778.
|
14 |
WANG D, CAO W, LI J, et al. DeepSD: Supply-demand prediction for online car-hailing services using deep neural network[C]//2017 IEEE 33rd International Conference on Data Engineering. San Diego, USA: IEEE, 2017: 243-254.
|
15 |
YU R, LI Y, SHAHABI C, et al. Deep learning: A generic approach for extreme condition traffic forecasting[C]//Proceedings of the 2017 SIAM international Conference on Data Mining. Houston, USA: SIAM, 2017: 777-785.
|
16 |
ZHAO J, XU J, ZHOU R, et al. On prediction of user destination by sub-trajectory understanding: A deep learning based approach[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Lingotto, Italy: ACM, 2018: 1413-1422.
|
17 |
YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 2018: 1-9.
|
18 |
QIU Z, LIU L, LI G, et al. Taxi origin-destination demand prediction with contextualized spatial-temporal network[C]//2019 IEEE International Conference on Multimedia and Expo. Shanghai, China: IEEE, 2019: 760-765.
|
19 |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Annual Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014: 3104-3112.
|
20 |
HOCHREITER S, BENGIO Y, FRASCONI P, et al. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-term Dependencies[M]. Piscataway, NJ, USA: Wiley-IEEE Press, 2001.
|
21 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
|
22 |
SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]//Annual Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015: 802-810.
|
23 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//International Conference on Learning Representations. San Diego, USA: JMLR, 2015: 1-15.
|
24 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2019: 8026-8037.
|
25 |
CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2016: 785-794.
|