
基于比尔朗伯定律的变分水平集模型
A Variational Level Set Model Based on Beer-Lambert Law
图像成像过程中,由于空气消光性的影响,获取的数字图像质量会退化,包括灰度不均,对比度下降等,给图像分割或者目标的识别带来困难.为解决此问题,本文提出了一个基于比尔朗伯光吸收定律的变分水平集模型以实现此类退化图像的分割和修正.首先基于比尔朗伯定律,将观测图像建模为一个退化场和真实图像的乘积.然后对退化场进行Markov随机场正则化,对真实图像实施分片Gaussian分布拟合建模,结合水平集函数正则项,建立变分水平集模型.最后采用结合梯度下降的交替迭代算法对模型进行数值求解.实验结果表明,本文模型可以很好地排除退化场的影响,得到满意的图像分割和修正效果.和几个经典的变分图像分割模型相比,本文模型展示出较好的实验效果,具有最优的JSI,DSI和VOE指标值.
The intensity inhomogeneity and low contrast caused by air extinction significantly reduce image quality and affect the subsequent image segmentation and target recognition. To solve this problem, a variational level set model based on Beer-Lambert law is proposed for image segmentation and inhomogeneity correction. Firstly, the observed image is modeled by a product of a degradation field and a real image based on Beer-Lambert law, in which the degradation field is regularized by a Markov random field, and the real image is represented by a piecewise Gaussian distribution. And then, using maximum a posterior probability (MAP) criterion, and incorporating a regularization term, we propose a variational level set model. Finally, an alternating iteration algorithm combining with gradient descent is developed to numerically solve the model. The experimental results validate the proposed model and algorithm, which can eliminate the effects of the intensity inhomogeneity, and obtain satisfactory results of image segmentation and correction. Compared with several state-of-the-art variational models, the proposed model shows the best performance in terms of the JSI, DSI and VOE indexes.
比尔朗伯定律 / 变分法 / 水平集 / 图像分割 / 图像修正 {{custom_keyword}} /
Beer-Lambert law / variational / level set / image segmentation / image correction {{custom_keyword}} /
|
---|
Step1: 初始化 Step2: 利用 Step3: 利用 Step4: 利用 Step5: 利用 Step6: 利用 Step7: 收敛条件满足, 输出; 否则令 |
表1 本文模型与LBF模型、 LIF模型、 LGDF模型的分割效率对比结果 |
图像 | LBF模型 | LIF模型 | LGDF模型 | 本文模型 | ||||
---|---|---|---|---|---|---|---|---|
Iter | Time | Iter | Time | Iter | Time | Iter | Time | |
合成图像A(图1) | 130 | 8.23 | 130 | 6.43 | 150 | 9.42 | 50 | 2.52 |
合成图像B(图1) | 120 | 7.62 | 110 | 5.46 | 150 | 9.36 | 40 | 2.02 |
汽车图像(图1) | 60 | 3.70 | 60 | 2.87 | 70 | 4.41 | 50 | 2.51 |
脑MR图像(图1) | 130 | 8.43 | 90 | 4.46 | 120 | 7.54 | 40 | 2.03 |
At本文图像(图4) | 40 | 2.53 | 30 | 1.49 | 30 | 1.78 | 20 | 1.04 |
血管图像(图4) | 1 420 | 89.90 | 860 | 42.24 | 1 530 | 96.28 | 148 | 7.32 |
表3 模型在Weizmann数据集中分割结果的JSI,DSI和VOE值 |
数据集 | 指标 | CV模型 | LBF模型 | LGDF模型 | MCV模型 | GLFIF模型 | GLIF模型 | 本文模型 |
---|---|---|---|---|---|---|---|---|
Image 1 | JSI | 0.732 5 | 0.704 3 | 0.713 9 | 0.638 6 | 0.711 1 | 0.650 6 | 0.743 2 |
DSI | 0.845 6 | 0.826 5 | 0.833 0 | 0.779 4 | 0.831 2 | 0.788 3 | 0.852 0 | |
VOE | 0.294 1 | 0.287 4 | 0.293 2 | 0.210 4 | 0.329 0 | 0.234 7 | 0.128 1 | |
Image 2 | JSI | 0.403 2 | 0.373 2 | 0.348 0 | 0.362 6 | 0.371 3 | 0.414 3 | 0.623 2 |
DSI | 0.465 3 | 0.429 1 | 0.291 6 | 0.416 0 | 0.426 8 | 0.478 3 | 0.732 1 | |
VOE | 0.556 7 | 0.417 8 | 0.461 9 | 0.545 4 | 0.520 8 | 0.422 8 | 0.147 6 | |
Image 3 | JSI | 0.732 5 | 0.704 3 | 0.713 9 | 0.638 6 | 0.711 1 | 0.650 6 | 0.753 4 |
DSI | 0.845 6 | 0.826 5 | 0.833 0 | 0.779 4 | 0.831 2 | 0.788 3 | 0.862 3 | |
VOE | 0.294 1 | 0.287 4 | 0.293 2 | 0.210 4 | 0.329 0 | 0.134 7 | 0.119 8 | |
Weizmann | JSI | 0.563 5 | 0.439 6 | 0.399 0 | 0.521 8 | 0.570 2 | 0.548 5 | 0.603 2 |
DSI | 0.693 9 | 0.597 5 | 0.402 4 | 0.657 4 | 0.701 1 | 0.686 6 | 0.711 5 | |
VOE | 0.402 2 | 0.288 5 | 0.318 1 | 0.418 6 | 0.369 8 | 0.336 3 | 0.276 5 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
李梦, 刘星, 任泽民. 联合Sobolev梯度的相场变分模型应用于图像显著性检测[J]. 电子学报, 2018, 46(7): 1683-1690.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
唐利明, 田学全, 黄大荣, 等. 结合FCMS与变分水平集的图像分割模型[J]. 自动化学报, 2014, 40(6): 1233-1248.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王慧斌, 高国伟, 徐立中, 等. 基于纹理特征的多区域水平集图像分割方法[J]. 电子学报, 2018, 46(11): 2588-2596.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |