1 |
KOCHERP C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[C]//Advances in Cryptology—CRYPTO'96. Berlin, Heidelberg: Springer-Verlag, 1996: 104‑113.
|
2 |
MESSERGEST S. Using second-order power analysis to attack DPA resistant software[C]//Cryptographic Hardware and Embedded Systems—CHES 2000. Berlin, Heidelberg: Springer-Verlag, 2000: 238‑251.
|
3 |
FERRIGNOJ, HLAVÁČM. When AES blinks: introducing optical side channel[J]. IET Information Security, 2008, 2(3): 94‑98.
|
4 |
GENKIND, SHAMIRA, TROMERE. RSA key extraction via low-bandwidth acoustic cryptanalysis[C]//Advances in Cryptology—CRYPTO 2014. Berlin, Heidelberg: Springer-Verlag, 2014: 444‑461.
|
5 |
BONEHD, DEMILLOR A, LIPTONR J. On the importance of checking cryptographic protocols for faults[C]//Advances in Cryptology—EUROCRYPT'97. Berlin, Heidelberg: Springer-Verlag, 1997: 37‑51.
|
6 |
KOCHERP, JAFFEJ, JUN B. Differential power analysis[C]//Advances in Cryptology—CRYPTO'99. Berlin, Heidelberg: Springer-Verlag, 1999: 388‑397.
|
7 |
NIKOVAS, RECHBERGERC, RIJMENV. Threshold implementations against side-channel attacks and glitches[C]//Information and Communications Security. Berlin, Heidelberg: Springer-Verlag, 2006: 529‑545.
|
8 |
PIRETG, QUISQUATERJ J. A differential fault attack technique against SPN structures, with application to the AES and KHAZAD[C]//Cryptographic Hardware and Embedded Systems—CHES 2003. Berlin, Heidelberg: Springer- Verlag, 2003: 77‑88.
|
9 |
FENGJ Y, CHENH, LIY, et al. A framework for evaluation and analysis on infection countermeasures against fault attacks[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 391‑406.
|
10 |
ISHAIY, PRABHAKARANM, SAHAIA, et al. Private circuits II: keeping secrets in tamperable circuits[C]//Advances in Cryptology—EUROCRYPT 2006. Berlin, Heidelberg: Springer-Verlag, 2006: 308‑327.
|
11 |
DE CNUDDET, NIKOVAS. More efficient private circuits II through threshold implementations[C]//2016 Workshop on Fault Diagnosis and Tolerance in Cryptography(FDTC). New Jersey: IEEE, 2016: 114‑124.
|
12 |
SCHNEIDERT, MORADIA, GÜNEYSUT. ParTI⁃towards combined hardware countermeasures against side-channel and fault-injection attacks[C]//Advances in Cryptology—CRYPTO 2016. Berlin, Heidelberg: Springer-Verlag, 2016: 302‑332.
|
13 |
REPARAZO, DE MEYERL, BILGINB, et al. CAPA: the spirit of beaver against physical attacks[C]//Advances in Cryptology—CRYPTO 2018. Berlin, Heidelberg: Springer-Verlag, 2018: 121‑151.
|
14 |
MEYERL D, ARRIBASV, NIKOVAS, et al. M&M: Masks and macs against physical attacks[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019, 2019(1): 25‑50.
|
15 |
吕述望, 苏波展, 王鹏, 等. SM4分组密码算法综述[J].信息安全研究, 2016, 2(11): 995‑1007.
|
|
Shu-wangLÜ, SUBo-zhan, WANGPeng, et al. Overview on SM4 algorithm[J].Journal of Information Security Research, 2016, 2(11): 995‑1007. (in Chinese)
|
16 |
谭锐能,卢元元,田椒陵.抗侧信道攻击的SM4多路径乘法掩码方法[J].计算机工程, 2014, 40(05): 103‑108, 114.
|
|
TANRui-neng, LUYuan-yuan, TIANJiao-ling. SM4 multi-path multiplicative masking method against side-channel attack[J]. Computer Engineering, 2014, 40(05):103‑108, 114. ( in Chinese)
|
17 |
裴超.一种SM4掩码方法和抗DPA攻击分析[J].密码学报, 2016, 3(01): 79‑90.
|
|
PEIChao. A method of masking SM4 and analysis against DPA attacks[J]. Journal of Cryptologic Research, 2016, 3(01): 79‑90. (in Chinese)
|
18 |
李新超,钟卫东,张帅伟,等.一种SM4算法S盒的门限实现方案[J].密码学报, 2018, 5(06): 641‑650.
|
|
LIXin-chao, ZHONGWei-dong, ZHANGShuai-wei, et al. A New Threshold Implementation of the S-box in SM4[J]. Journal of Cryptologic Research, 2018, 5(06):641‑650. (in Chinese)
|
19 |
WEIMan, SUNSiwei, WEIZihao, HULei. Unbalanced sharing: a threshold implementation of SM4[J].Science China(Information Sciences), 2021, 64(05): 218‑220.
|
20 |
辛小霞. 抗故障攻击的硬件密码算法研究与实现[D]. 湖南长沙: 湖南大学, 2015.
|
|
XINXiao-xia. The Research and Implementation of Hardware Cryptographic Algorithms to Resist Fault Attack[D]. Changsha, Hunan: Hunan University, 2015. (in Chinese)
|
21 |
REPARAZO, BILGINB, NIKOVAS, GIERLICHSB, VERBAUWHEDEI. Consolidating masking schemes in CRYPTO[C]//Advances in Cryptology—CRYPTO 2015. Berlin, Heidelberg: Springer-Verlag, 2015: 764‑783.
|
22 |
MAOW, BAIX, WENL. Methods and apparatus for secure and efficient implementation of block ciphers: CN2017/080318[P]. 2017-04-12.
|
23 |
CANRIGHT, D. A very compact S-Box for AES[C]//Cryptographic Hardware and Embedded Systems—CHES 2005. Berlin, Heidelberg: Springer-Verlag, 2005: 441‑455.
|
24 |
CNUDDET D, REPARAZO, BILGINBEGÜL, et al. Masking AES with d+1 shares in hardware[C]//Cryptographic Hardware and Embedded Systems—CHES 2016. Berlin, Heidelberg: Springer-Verlag, 2016: 194‑212.
|
25 |
SCHNEIDERT, MORADIA. Leakage assessment methodology[C]//Cryptographic Hardware and Embedded Systems—CHES 2015. Berlin, Heidelberg: Springer-Verlag, 2015: 495‑513.
|