1 |
孙学宏, 李强, 庞丹旭, 等. 轨道角动量在无线通信中的研究新进展综述[J]. 电子学报, 2015, 43(11): 2305-2314.
|
|
SunX H, LiQ, PangD X, et al. New research progress of the orbital angular momentum technology in wireless communication: A Survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305-2314. (in Chinese).
|
2 |
AndrewsL C, PhillipsR L. Laser beam propagation through random media. Second Edition[M]. Belling, Washington,USA: SPIE, 2005: 30-171.
|
3 |
赵强, 张蕊, 林乐科, 等. 对流层散射传输损耗与大气折射率结构常数相关性研究[J]. 电子学报, 2020, 48(3): 518-523.
|
|
ZhaoQ, ZhangR, LinL K, et al. Research on the correlation of troposcatter transmission loss and structure constant of the refractive index[J]. Acta Electronica Sinica, 2020, 48(3): 518-523. (in Chinese).
|
4 |
陈纯毅, 杨华民, 姜会林, 等. 大气信道部分相干光通信链路性能分析与优化[J]. 电子学报, 2009, 37(8): 1869-1872.
|
|
ChenC Y, YangH M, JiangH L, et al. Performance analysis and optimization of partially coherent optical communication links through atmospheric channel[J]. Acta Electronica Sinica, 2009, 37(8): 1869-1872. (in Chinese).
|
5 |
LiL, ZhangR, LiaoP, et al. Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization[J]. Optics Letters, 2019, 44(21): 5181-5184.
|
6 |
LiL, SongH, ZhangR, et al. Increasing system tolerance to turbulence in a 100-Gbit/s QPSK free-space optical link using both mode and space diversity[J]. Optics Communications, 2021, 480: 126488.
|
7 |
AmhoudE M, ChafiiM, NimrA, et al. OFDM with Index Modulation in Orbital Angular Momentum Multiplexed Free Space Optical Links[A]. Proceedings of the 93rd Vehicular Technology Conference (VTC2021-Spring)[C]. Helsinki, Finland: IEEE, 2021: 1-5.
|
8 |
WangA, ZhuL, DengM, et al. Experimental demonstration of OAM-based transmitter mode diversity data transmission under atmosphere turbulence[J]. Optics Express, 2021, 29(9): 13171-13182.
|
9 |
WangL G, WangL Q, ZhuS Y. Formation of optical vortices using coherent laser beam arrays[J]. Optics Communications, 2009, 282(6): 1088-1094.
|
10 |
WangL G, ZhengW W. The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(6): 065703.
|
11 |
PengY, XueY, XiaoG, et al. Spiral spectrum analysis and application of coherent synthetic vortex beams[J]. Acta Physica Sinica, 2019, 68(21): 214206.
|
12 |
ZhouG, TangH, ZhuK, et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere[J]. Optics Express, 2008, 16(26): 21315-21320.
|
13 |
YueP, XuD L, YiX. Propagation of the Bessel-Gaussian beams generated by coherent beam combining in oceanic turbulence[J]. Journal of Communications and Information Networks, 2019, 4(3): 25-37.
|
14 |
ChuX X, SunQ, WangJ, et al. Generating a Bessel-Gaussian beam for the application in optical engineering[J]. Scientific Reports, 2015, 5(5): 18665.
|
15 |
AksenovV P, DudorovV V, KolosovV V, et al. Generation of vortex and partially coherent laser beams based on fiber array coherent combining[J]. Proceedings of the SPIE, 2018, 10787: 107870M.
|
16 |
AnicetoB, JosephM K. Performance of synchronous optical receivers using atmospheric compensation techniques[J]. Optics Express, 2008, 16(18): 14151-14162.
|
17 |
GoodmanJ W. Speckle Phenomena in Optics: Theory and Applications[M]. Belling, Washington, USA: SPIE, 2007: 14-42.
|
18 |
LeaderJ C. Atmospheric propagation of partially coherent radiation[J]. Journal of the Optical Society of America, 1978, 68(2): 175-185.
|
19 |
StrohbehnJ W, WangT, SpeckJ P. On the probability distribution of line-of-sight fluctuations of optical signals[J]. Radio Science, 1975, 10(1): 59-70.
|
20 |
GradysteynI, RyzhikI. Table of Integrals, Series, and Products. Seventh Edition[M]. Rensselaer Polytechnic Institute, USA: Academic, 2014: 16-185.
|
21 |
PawulaR F, RiceS O, RobertsJ H. Distribution of the phase angle between two vectors perturbed by gaussian noise[J]. IEEE Transactions on Communications, 1982, 30(8): 1828-1841.
|