1 |
CapmanyJ,NovakD. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.
|
2 |
YaoJ P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
|
3 |
SeedsA,WilliamsK. Microwave photonics[J]. Journal of Lightwave Technology, 2006, 24(12): 4628-4641.
|
4 |
CoxIII C, AckermanE, BettsG,et al. Limits on the performance of RF-over-fiber links and their impact on device design[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 906-920.
|
5 |
CuiW T, ShaoT, YaoJ P. Wavelength reuse in a UWB over WDM-PON based on injection locking of a Fabry-Pérot laser diode and polarization multiplexing[J]. Journal of Lightwave Technology, 2014, 32(2): 220-227.
|
6 |
XiongF, ZhongW D, KimH. A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Pérot laser diodes[J]. Journal of Lightwave Technology, 2012, 30(3): 355-364.
|
7 |
LeeW, ParkM Y, ChoS H, et al. Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers[J]. IEEE Photonics Technology Letters, 2005, 17(11): 2460-2462.
|
8 |
ZhuB B, PanS L, ZhuD, et al. Wavelength reuse in a bidirectional radio-over-fiber link based on cross-gain and cross-polarization modulation in a semiconductor optical amplifier[J]. Optics Letters, 2013, 38(18): 3496-3498.
|
9 |
FadyI, NahalE. A WDM-PON with DPSK modulated downstream and OOK modulated upstream signals based on symmetric 10 Gbit/s wavelength reused bidirectional reflective SOA[J]. Optoelectronics Letters, 2017, 13(1): 67-69.
|
10 |
ZhangF Z, ZhangT T, PanS L. A full-duplex radio-over-fiber system with centralized light source and bidirectional fiber transmission based on optical sideband reuse[A]. 2014 International Topical Meeting on Microwave Photonics (MWP) jointly held with the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP)[C]. Hokkaido, Japan: IEEE, 2014. 20-23.
|
11 |
ChangQ J, FuH Y, SuY K. Simultaneous generation and transmission of downstream multiband signals and upstream data in a bidirectional radio-over-fiber system[J]. Photonics Technology Letters, IEEE, 2008, 20(3): 181-183.
|
12 |
SuT, ZhengJ Y, WangJ, et al. Multiservice wireless transport over RoF link with colorless BS using PolM-to-IM convertor[J]. IEEE Photonics Technology Letters, 2015, 27(4): 403-406.
|
13 |
ZhengJ Y, WangH, WangL X, et al. Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system[J]. Optics Letters, 2013, 38(7): 1167-1169.
|
14 |
ZhaiW, WenA, ZhangH, et al. Improvement of linearity and mitigation of dispersion-induced power fading in multi-channel phase-modulated analog photonic link based on a polarization modulator[J]. Journal of Lightwave Technology, 2018, 36(18): 3976-3987.
|
15 |
ZhuD, ChenJ, PanS L. Linearized phase-modulated analog photonic link with the dispersion-induced power fading effect suppressed based on optical carrier band processing[J]. Optics Express, 2017, 25(9): 10397-10404.
|
16 |
ChenZ, YanL, PanW, et al. SFDR enhancement in analog photonic links by simultaneous compensation for dispersion and nonlinearity[J]. Optics Express, 2013, 21(18): 20999-21009.
|
17 |
姜凌珂,张 琪,潘林兵,等.单通带微波光子滤波器泵浦响应性能研究[J]. 电子学报, 2017, 45(7): 1620-1626.
|
|
JiangL K, ZhangQ, PanL B, et al. The study on the pump response performance of single passband microwave photonic filter[J]. Acta Electronica Sinica, 2017, 45(7): 1620-1626. (in Chinese)
|
18 |
ZhaiW, WenA, ShanD. Multidimensional optimization of a radio-over-fiber link[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 99: 1-12.
|
19 |
LiN, YaoJ. High dynamic range and wavelength-reused bidirectional radio-over-fiber link[J]. Optics Letters, 2019, 44(6): 1331-1334.
|
20 |
SmithG H, NovakD, AhmedZ. Overcome chromatic-dispersion effects in fiber-wireless systems incorporating external modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1410-1415.
|