基于金字塔块匹配的双目场景流估计

陈震, 倪晶晶, 张聪炫, 葛利跃, 王梓歌

电子学报 ›› 2022, Vol. 50 ›› Issue (9) : 2164-2171.

PDF(1780 KB)
PDF(1780 KB)
电子学报 ›› 2022, Vol. 50 ›› Issue (9) : 2164-2171. DOI: 10.12263/DZXB.20210385
学术论文

基于金字塔块匹配的双目场景流估计

作者信息 +

Binocular Scene Flow Estimation Based on Pyramid Block Matching

Author information +
文章历史 +

本文亮点

针对现有双目场景流计算方法在大位移、运动遮挡及光照变化等复杂场景下场景流估计的准确性与鲁棒性问题,提出一种基于金字塔块匹配的双目场景流计算方法.首先对双目图像序列进行超像素分割和视差估计,得到图像初始分割结果和视差信息,然后建立基于金字塔块匹配的运动模型并采用Ransac随机一致性算法拟合刚性运动模型和最小化重投影算法估计对象运动参数.最后,本文将金字塔块匹配结果作为约束项,联合对象运动参数和超像素平面参数构建基于金字塔块匹配的双目场景流估计能量函数模型,通过最小化能量函数得到最终场景流.实验分别采用KITTI2015(Karlsruhe Institute of Technology and Toyota technological Institute 2015)和MPI-Sintel(Max-Planck Institute and Sintel)数据集测试图像对本文方法和具有代表性场景流算法进行综合对比分析,结果表明本文方法相对于其他对比方法有效提高大位移、运动遮挡以及光照变化情况下场景流估计精度和鲁棒性.

HeighLight

Aiming at the accuracy and robustness of existing binocular scene flow calculation methods in complex scenes such as large displacement, motion occlusion and illumination changes, this paper proposes a binocular scene flow estimation method based on pyramid block matching. Firstly, we apply the superpixel segmentation and disparity estimation to the binocular image sequence to obtain the initial image segmentation results and disparity information. Secondly, we establish a motion model based on pyramid block matching. Then we fit the rigid motion model by using Ransac stochastic consensus algorithm and estimate the object motion parameters by minimizing the reprojection algorithm. Finally, this paper takes the matching result of the pyramid block as a constraint item, then we construct a binocular scene flow estimation energy function model based on the pyramid block matching by combines the object motion parameters and the superpixel plane parameters, and obtains the final scene flow by minimizing the energy function. The image sequences provided by the KITTI2015(Karlsruhe Institute of Technology and Toyota Technological Institute 2015) and MPI-Sintel(Max-Planck Institute and Sintel) databases were adopted to compare and analyze the proposed method in this paper and the existing representative scene flow method. The experimental results show that compared with other comparison methods, the method in this paper has high accuracy and robustness of scene flow estimatin, especially in large displacement, motion occlusion and lighting changes.

引用本文

导出引用
陈震 , 倪晶晶 , 张聪炫 , 葛利跃 , 王梓歌. 基于金字塔块匹配的双目场景流估计[J]. 电子学报, 2022, 50(9): 2164-2171. https://doi.org/10.12263/DZXB.20210385
CHEN Zhen , NI Jing-jing , ZHANG Cong-xuan , GE Li-yue , WANG Zi-ge. Binocular Scene Flow Estimation Based on Pyramid Block Matching[J]. Acta Electronica Sinica, 2022, 50(9): 2164-2171. https://doi.org/10.12263/DZXB.20210385
中图分类号: TP391   

参考文献

1
常侃, 张智勇, 陈诚, 等. 采用低秩与加权稀疏分解的视频前景检测算法[J]. 电子学报, 2017, 45(9): 2272-2280.
CHANGKan, ZHANGZhi-yong, CHENChen, et al. Video foreground detection by low-rank and reweighted sparse decomposition[J]. Acta Electronica Sinica, 2017, 45(9): 2272-2280. (in Chinese)
2
谢佳龙, 张波涛, 吕强. 一种基于双流融合3D卷积神经网络的动态头势识别方法[J]. 电子学报, 2021, 49(7): 1363-1369.
XIEJia-long, ZHANGBo-tao, Qiang. A dynamic head gesture recognition method based on 3D convolutional two-stream network fusion[J]. Acta Electronica Sinica, 2021, 49(7): 1363-1369. (in Chinese)
3
王伟, 于磊, 任国恒, 等. 城市建筑立面三维"线-面"结构快速重建[J]. 电子学报, 2021, 49(8): 1551-1560.
WANGWei, YULei, RENGuo-heng, et al. Rapidly reconstructing 3D line-plane structures of urban building facades[J]. Acta Electronica Sinica, 2021, 49(8): 1551-1560. (in Chinese)
4
张聪炫, 裴刘继, 陈震, 等. FRFCM聚类与深度优化的RGBD场景流计算[J]. 电子学报, 2020, 48(7): 1380-1386.
ZHANGCong-xuan, PEILiu-ji, CHENZhen, et al. RGBD scene flow estimation based on FRFCM clustering and depth optimization[J]. Acta Electronica Sinica, 2020, 48(7): 1380-1386. (in Chinese)
5
MENZEM, GEIGERA. Object scene flow for autonomous vehicles[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 3061-3070.
6
SCHUSTERR, WASENMULLERO, KUSCHKG, et al. SceneFlowFields: dense interpolation of sparse scene flow correspondences[C]//2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2018: 1056-1065.
7
RENZ L, SUND Q, KAUTZJ, et al. Cascaded scene flow prediction using semantic segmentation[C]//2017 International Conference on 3D Vision. Piscataway: IEEE Press, 2017: 225-233.
8
JIANGH Z, SUND Q, JAMPANIV, et al. SENSE: A shared encoder network for scene-flow estimation[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 3194-3203.
9
YANGG S, RAMANAND. Upgrading optical flow to 3D scene flow through optical expansion[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1331-1340.
10
SAXENAR, SCHUSTERR, WASENMULLERO, et al. PWOC-3D: Deep occlusion-aware end-to-end scene flow estimation[C]//2019 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2019: 324-331.
11
HUR J, ROTHS. Self-supervised monocular scene flow estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 7394-7403.
12
MENZEM, HEIPKEC, GEIGERA. Object scene flow[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140: 60-76.
13
TANIAIT, SINHAS N, SATOY. Fast multi-frame stereo scene flow with motion segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6891-6900.
14
VOGELC, SCHINDLERK, ROTHS. Piecewise rigid scene flow[C]//2013 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2013: 1377-1384.
15
BUTLERD J, WULFFJ, STANLEYG B, et al. A Naturalistic Open Source Movie for Optical Flow Evaluation[C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer Press, 2012: 611-625.
16
陈震, 马龙, 张聪炫, 等. 基于语义分割的双目场景流估计[J]. 电子学报, 2020, 48(4): 631-636.
CHENZhen, MALong, ZHANGCong-xuan, et al. Binocular scene flow estimation based on semantic segmentation[J]. Acta Electronica Sinica, 2020, 48(4): 631-636. (in Chinese)

基金

国家重点研发计划(2020YFC2003800)
国家自然科学基金(61866026)
江西省优势科技创新团队计划(20165BCB19007)
江西省技术创新引导类计划项目(20212AEI91005)
江西省自然科学基金重点项目(20202ACB214007)
航空科学基金(2018ZC56008)
中国博士后科学基金(2019M650894)
江西省教育厅科学技术研究项目(GJJ210910)
江西省图像处理与模式识别重点实验室开放基金资助(ET202104413)
PDF(1780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/