1 |
LI H F, JIANG T, ZHANG K S. Efficient and robust feature extraction by maximum margin criterion[J]. IEEE Transactions on Neural Networks, 2006, 17(1): 157-165.
|
2 |
蒋盛益, 郑琪, 张倩生. 基于聚类的特征选择方法[J]. 电子学报, 2008, 36(S1): 157-160.
|
|
JIANG S Y, ZHENG Q, ZHANG Q S. Clustering-based feature selection[J]. Acta Electronica Sinica, 2008, 36(S1): 157-160. (in Chinese)
|
3 |
SONG X N, ZANG J G, HAN Y H, et al. Semi-supervised feature selection via hierarchical regression for web image classification[J]. Multimedia Systems, 2016, 22(1): 41-49.
|
4 |
刘艳芳, 李文斌, 高阳. 基于自适应邻域嵌入的无监督特征选择算法[J]. 计算机研究与发展, 2020, 57(8): 1639-1649.
|
|
LIU Y F, LI W B, GAO Y. Adaptive neighborhood embedding based unsupervised feature selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. (in Chinese)
|
5 |
SHEIKHPOUR R, SARRAM M A, GHARAGHANI S, et al. A Survey on semi-supervised feature selection methods[J]. Pattern Recognition, 2017, 64: 141-158.
|
6 |
ZHAO H F, LI Q, WANG Z, et al. Joint adaptive graph learning and discriminative analysis for unsupervised feature selection[J]. Cognitive Computation, 2021: 1-11.
|
7 |
余游, 冯林, 王格格, 等. 一种基于伪标签的半监督少样本学习模型[J]. 电子学报, 2019, 47(11): 2284-2291.
|
|
YU Y, FENG L, WANG G G, et al. A few-shot learning model based on semi-supervised with pseudo label[J]. Acta Electronica Sinica, 2019, 47(11): 2284-2291. (in Chinese)
|
8 |
ZHAO J D, LU K, HE X F. Locality sensitive semi-supervised feature selection[J]. Neurocomputing, 2008, 71(10/11/12): 1842-1849.
|
9 |
LIU Y, NIE F P, WU J G, et al. Efficient semi-supervised feature selection with noise insensitive trace ratio criterion[J]. Neurocomputing, 2013, 105: 12-18.
|
10 |
CHANG X J, NIE F P, YANG Y, et al. A convex formulation for semi-supervised multi-label feature selection[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec City: AAAI Press, 2014: 1171-1177.
|
11 |
CHEN X J, YUAN G W, NIE F P, et al. Semi-supervised feature selection via rescaled linear regression[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 1525-1531.
|
12 |
BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7: 2399-2434.
|
13 |
MA Z G, NIE F P, YANG Y, et al. Discriminating joint feature analysis for multimedia data understanding[J]. IEEE Transactions on Multimedia, 2012, 14(6): 1662-1672.
|
14 |
LUO T J, HOU C P, NIE F P, et al. Semi-supervised feature selection via insensitive sparse regression with application to video semantic recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(10): 1943-1956.
|
15 |
SHEIKHPOUR R, SARRAM M A, GHARAGHANI S, et al. A robust graph-based semi-supervised sparse feature selection method[J]. Information Sciences, 2020, 531: 13-30.
|
16 |
NIE F P, ZHU W, LI X L. Structured graph optimization for unsupervised feature selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(3): 1210-1222.
|
17 |
ZHANG Z, ZHAO M B, CHOW T W S. Graph based constrained semi-supervised learning framework via label propagation over adaptive neighborhood[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9): 2362-2376.
|
18 |
JIANG B B, WU X Y, YU K, et al. Joint semi-supervised feature selection and classification through Bayesian approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3983-3990.
|
19 |
陈兵飞, 江兵兵, 周熙人, 等. 基于稀疏贝叶斯的流形学习[J]. 电子学报, 2018, 46(1): 98-103.
|
|
CHEN B F, JIANG B B, ZHOU X R, et al. Manifold learning based on sparse Bayesian approach[J]. Acta Electronica Sinica, 2018, 46(1): 98-103. (in Chinese)
|
20 |
NIE F P, WANG X Q, HUANG H. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2014: 977-986.
|
21 |
XU Y Y, WANG J, AN S, et al. Semi-supervised multi-label feature selection by preserving feature-label space consistency[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 783-792.
|
22 |
HUANG J, NIE F P, HUANG H. A new simplex sparse learning model to measure data similarity for clustering[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Buenos Aires: AAAI Press, 2015: 3569-3575
|
23 |
HOU C P, NIE F P, TAO H, et al. Multi-view unsupervised feature selection with adaptive similarity and view weight[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9): 1998-2011.
|