1 |
XINZ H, LIAOG S, YANGZ W, et al. A fast ground moving target focusing method based on first‑order discrete polynomial‑phase transform[J]. Digital Signal Processing, 2017, 60: 287‑295.
|
2 |
TIANR Q, LINC Y, BAOQ L, et al. Coherent integration method of high‑speed target for frequency agile radar[J]. IEEE Access, 2018, 6: 18984‑18993.
|
3 |
HUANGP H, DONGS S, LIUX Z, et al. A coherent integration method for moving target detection using frequency agile radar[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 206‑210.
|
4 |
LIANGM, SUW M, GUH. Focusing high‑resolution high forward‑looking bistatic SAR with nonequal platform velocities based on keystone transform and modified nonlinear chirp scaling algorithm[J]. IEEE Sensors Journal, 2019, 12(3): 901‑908.
|
5 |
PERRYR P, DIPIETROR C, FANTER L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188‑200.
|
6 |
ZENGC, LID, LUOX, et al. Ground maneuvering targets imaging for synthetic aperture radar based on second‑order keystone transform and high‑order motion parameter estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 12(11): 4486‑4501.
|
7 |
WANJ, ZHOUY, ZHANGL R, et al. Ground moving target focusing and motion parameter estimation method via modified second‑order keystone transform for synthetic aperture radar[J]. IET Signal Processing, 2019, 13(5): 528‑537.
|
8 |
LIY. Range migration compensation and doppler ambiguity resolution by keystone transform[C]//ZENG T. Proceedings of 2006 IEEE CIE International Conference on Radar. Shanghai: IEEE, 2006: 1‑4.
|
9 |
ZHUD Y, LIY, ZHUZ D. A keystone transform without interpolation for SAR ground moving‑target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18‑22.
|
10 |
ZHAOY B. Low complexity keystone transform without interpolation for dim moving target[C]//WANG J. Proceedings of 2011 IEEE CIE International Conference on Radar. Chengdu: IEEE, 2011: 1745‑1748.
|
11 |
帅晓飞,朱玉军,詹旭. 基于keystone变换的弱目标积累检测及工程实现方法[J]. 火控雷达技术, 2018, 47(3): 27‑30.
|
|
SHUAIXiao‑fei, ZHUYu‑jun, ZHANXu. Weak target accumulation detection based on keystone transform and implementation methods in engineering[J]. Fire Control Radar Technology, 2018, 47(3): 27‑30. (in Chinese)
|
12 |
COHENL. The scale representation[J]. IEEE Transactions on Signal Processing, 1994, 41(12): 3275‑3292.
|
13 |
HARLEYJ B, MOURAJ M F. Scale transform signal processing for optimal ultrasonic temperature compensation[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2012, 59(10): 2226‑2235.
|
14 |
CULHAO, TANIKY. Low complexity Keystone transform and Radon Fourier transform utilizing Chirp‑Z transform[J]. IEEE Access, 2020, 8: 105535‑105541.
|
15 |
MONJURM S, TSENGS, TRIPATHIR, et al. Incorporation of polar mellin transform in a hybrid optoelectronic correlator for scale and rotation invariant target recognition[J]. Journal of the Optical Society of America A‑Optics Image Science & Vision, 2014, 31(6): 1259‑1272.
|
16 |
MONAKOVA. The mellin matched filter[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1451‑1459.
|
17 |
SENAD A, ROCCHESSOD. A fast mellin and scale transform[J]. EURASIP Journal on Advances in Signal Processing, 2007: 089170.
|
18 |
SUNDARAMH, JOSHIS D, BHATTR K P. Scale periodicity and its sampling theorem[J]. IEEE Transaction on Signal Processing, 2002, 45(7): 1862‑1865.
|