1 |
LUOX, ZHOUM C, LIS, et al. Algorithms of unconstrained non-negative latent factor analysis for recommender systems[J]. IEEE Transactions on Big Data, 2021, 7(1): 227-240.
|
2 |
LUOX, WANGD X, ZHOUM C, et al. Latent factor-based recommenders relying on extended stochastic gradient descent algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 916-926.
|
3 |
WUD, LUOX, SHANGM S, et al. A deep latent factor model for high-dimensional and sparse matrices in recommender systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021,51(7): 4285-4296.
|
4 |
李林峰, 刘真, 魏港明, 等. 基于共享知识模型的跨领域推荐算法[J]. 电子学报, 2018, 46(8): 1947-1953.
|
|
LIL F, LIUZ, WEIG M, et al. Cross-domain recommendation algorithm based on sharing knowledge pattern[J]. Acta Electronica Sinica, 2018, 46(8): 1947-1953. (in Chinese)
|
5 |
SINGHA P, GORDONG J. Relational learning via collective matrix factorization[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 650-658.
|
6 |
MANT, SHENH W, JINX L, et al. Cross-domain recommendation: an embedding and mapping approach[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press,2017: 2464-2470.
|
7 |
ZHUFeng, WANGYan, CHENChaochao, et al. A deep framework for cross-domain and cross-system recommendations[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: AAAI Press, 2018: 3711-3717.
|
8 |
刘真, 田靖玉, 苑宝鑫, 等. 基于知识聚合和迁移的跨领域推荐算法[J]. 电子学报, 2020, 48(10): 1928-1932.
|
|
LIUZ, TIANJ Y, YUANB X, et al. Cross-domain recommendation algorithm based on knowledge aggregation and transfer[J]. Acta Electronica Sinica, 2020, 48(10): 1928-1932. (in Chinese)
|
9 |
ELKAHKYA M, SONGY, HEX D. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//WWW'15: Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 278-288.
|
10 |
SONGT H, PENGZ H, WANGS Z, et al. Review-based cross-domain recommendation through joint tensor factorization[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer, 2017: 525-540.
|
11 |
FUW J, PENGZ H, WANGS Z, et al. Deeply fusing reviews and contents for cold start users in cross-domain recommendation systems[C]//The Thirty-Third AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 94-101.
|
12 |
ZHAOC, LIC L, XIAOR, et al. CATN: cross-domain recommendation for cold-start users via aspect transfer network[C]//SIGIR'20: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 229-238.
|
13 |
CHENGZ Y, DINGY, ZHUL, et al. Aspect-aware latent factor model: Rating prediction with ratings and reviews[C]//WWW'18: Proceedings of the 2018 World Wide Web Conference. New York: ACM, 2018: 639-648.
|
14 |
BAHDANAUD, CHOK, BENGIOY. Neural machine translation by jointly learning to align and translate[EB/OL]. (2014-09-01). .
|
15 |
VASWANIA, SHAZEERN, PARMARN, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2017: 6000-6010.
|
16 |
SabourS, FrosstN, HintonG E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2017: 3859-3869.
|
17 |
郑启航, 王章权, 刘半藤, 等. 基于加性间距胶囊网络的家庭活动识别方法研究[J]. 电子学报, 2020, 48(8): 1580-1586.
|
|
ZHENGQ H, WANGZ Q, LIUB T, et al. Research on family activity recognition method based on additive margin capsule network[J]. Acta Electronica Sinica, 2020, 48(8): 1580-1586. (in Chinese)
|
18 |
任开旭, 王玉龙, 刘同存, 等. 融合多维语义表示的概率矩阵分解模型[J]. 电子学报, 2019, 47(9): 1848-1854.
|
|
RENK X, WANGY L, LIUT C, et al. A probabilistic matrix factorization model based on multidimensional semantic representation learning[J]. Acta Electronica Sinica, 2019, 47(9): 1848-1854. (in Chinese)
|
19 |
KINGMAD P, BAJ. ADAM: A method for stochastic optimization[EB/OL].(2014-12-22). .
|
20 |
MCAULEYJ, TARGETTC, SHIQ F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52.
|
21 |
CHINJ Y, ZHAOK Q, JOTYS R, et al. ANR: aspect-based neural recommender[C].Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018. 147-156
|