电子学报 ›› 2022, Vol. 50 ›› Issue (5): 1107-1116.DOI: 10.12263/DZXB.20210495
张继龙1, 李业振2, 刘勇2, 王栋3
收稿日期:
2021-04-19
修回日期:
2021-08-17
出版日期:
2022-05-25
作者简介:
ZHANG Ji-long1, LI Ye-zhen2, LIU Yong2, WANG Dong3
Received:
2021-04-19
Revised:
2021-08-17
Online:
2022-05-25
Published:
2022-06-18
摘要:
微波成像技术在雷达、制导、引信、安防、医疗等领域有极大的应用需求,本文研究了基于透镜成像原理的微波阵列快速成像技术,通过分析透镜成像系统的成像特性以及成像算法,提出了一种适用于阵列成像的快速算法,该方法仅需要执行一次IFFT(Inverse Fast Fourier Transform)运算即可获得目标的像. 所提出的新方法降低了算法复杂度,具有较快的运算速度. 最后进行了成像验证,采用微波暗室测试散射源近场数据,通过快速成像算法计算目标的像,实验结果证明新算法具有较好的成像效果.
中图分类号:
张继龙, 李业振, 刘勇, 等. 基于透镜成像原理的微波阵列快速成像技术[J]. 电子学报, 2022, 50(5): 1107-1116.
Ji-long ZHANG, Ye-zhen LI, Yong LIU, et al. A Novel Fast Imaging Technology of Microwave Array Based on Lens Imaging Principle[J]. Acta Electronica Sinica, 2022, 50(5): 1107-1116.
1 | KU B, SCHMALENBERG P, et al. A 77-81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars[J]. IEEE Trans on MTT, 2014, 62(11): 2823‑2832. |
2 | COOPER K B, DENGLER R J, LLOMBART N, THOMAS B, CHATTOPADHYAY G, SIEGEL P H. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169‑182. |
3 | YANG B, YU Z, LAN J, ZHANG R, ZHOU J, HONG W. Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3403‑3418. |
4 | FULTON C, YEARY M, THOMPSON D, LAKE J, MITCHELL A. Digital phased arrays: challenges and opportunities[J]. Proceedings of the IEEE, 2016, 104(3): 487‑503. |
5 | QIU J S, ZHANG Z M, et al. A novel weight generator in real-time processing architecture of DBF-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, PP(99): 1‑15. |
6 | BERARDINO P, FORNARO G, LANARI R, SANSOSTI E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375‑2383. |
7 | MOREIRA A, PRATS-IRAOLA P, YOUNIS M, KRIEGER G, HAJNSEK I, PAPATHANASSIOU K P. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6‑43. |
8 | YOUNIS M, QUEIROZ DE ALMEIDA F, VILLANO M, HUBER S, KRIEGER G, MOREIRA A. Digital beamforming for spaceborne reflector-based synthetic aperture radar, part 1: basic imaging modes[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(3): 8‑25. |
9 | 邢孟道, 保铮. 基于运动参数估计的SAR成像[J]. 电子学报, 2001, 29(12A): 1824‑1828. |
XING Meng-dao, BAO Zheng. Motion parameter estimation based SAR imaging[J]. Acta Electronica Sinica, 2001, 29(12A): 1824‑1828. (in Chinese) | |
10 | 李春升, 王伟杰, 王鹏波, 陈杰, 徐华平, 杨威, 于泽, 孙兵, 李景文. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229‑240. |
LI Chunsheng, WANG Weijie, WANG Pengbo, CHEN Jie, XU Huaping, YANG Wei, YU Ze, SUN Bing, LI Jingwen. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronic & Information Technology, 2016, 38(1): 229‑240. (in Chinese) | |
11 | 徐蕾, 王勇, 王全旺. 基于相位补偿的圆周SAR高分辨率三维成像方法[J]. 现代雷达, 2021, 43(3): 37‑43. |
XU Lei, WANG Yong, WANG Quanwang. High resolution three-dimensional imaging method for circular SAR based on phase compensation[J]. Modern Radar, 2021, 43(3): 37‑43. (in Chinese) | |
12 | RONG J, WANG Y, HAN T. Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging[J]. IEEE Sensors Journal, 2019, 19(19): 8681‑8693. |
13 | BERIZZI F, MESE E D, DIANI M, MARTORELLA M. High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: modeling and performance analysis[J]. IEEE Transactions on Image Processing, 2001, 10(12): 1880‑1890. |
14 | PENG Z, MUÑOZ-FERRERAS J M, et al. A portable FMCW interferometry radar with programmable low-IF architecture for localization, ISAR imaging, and vital sign tracking[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(4): 1334‑1344. |
15 | ZHANG S, LIU Y, LI X, HU D. Enhancing ISAR image efficiently via convolutional reweighted I1 minimization[J]. IEEE Transactions on Image Processing, 2021, 30: 4291‑4304. |
16 | 保铮, 叶炜. ISAR运动补偿聚焦方法的改进[J]. 电子学报, 1996, 24(9): 74‑79. |
BAO Zheng, YE Wei. Improvements of autofocusing techniques for ISAR motion compensation[J]. Acta Electronica Sinica, 1996, 24(9): 74‑79. (in Chinese) | |
17 | 周万幸. ISAR成像系统与技术发展综述[J]. 现代雷达, 2012, 34(9): 1‑7. |
ZHOU Wan-xing. Development and prospect of ISAR imaging system and imaging technique[J]. Modern Radar, 2012, 34(9): 1‑7. (in Chinese) | |
18 | 黎湘. 复杂运动目标雷达成像研究进展[J]. 中国科学: 信息科学, 2021, 51(2): 305‑324. |
LI Xiang. Progress in radar imaging for maneuvering targets[J]. Scientia Sinica Informationis, 2021, 51(2): 305‑ 324. (in Chinese) | |
19 | OJEFORS E, PFEIFFER U R, LISAUSKAS A, ROSKOS H G. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology[J]. IEEE Journal of Solid-State Circuits, 2009, 44(7): 1968‑1976. |
20 | TRICHOPOULOS G C, MOSBACKER H L, BURDETTE D, SERTEL K. A broadband focal plane array camera for real-time THz imaging applications[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1733‑1740. |
21 | PEPEL V D, WEBSTER P T, LOGAN J V, MORATH C P. Extraction of trap energy distribution in proton-irradiated focal plane arrays using a high-precision random telegraph noise detection algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1‑10. |
22 | GÜNGÖR A, KAR O F, GÜVEN H E. A matrix-free reconstruction method for compressive focal plane array imaging[C]//2018 25th IEEE International Conference on Image Processing(ICIP). Piscataway, NJ, USA: IEEE Press, 2018: 1827‑1831. |
23 | 陈其科, 李良超, 樊勇, 杨建宇, 张永鸿. W波段16元完全采样焦平面线性阵列天线设计[J]. 红外与毫米波学报, 2013, 32(1): 23‑27. |
CHEN Qi-Ke, FAN Yong, LI Liang-Chao, YANG Jian-Yu, ZHANG Yong-Hong. Design of W-band 16 elements full sampling focal plane linear array[J]. J INFRARED MILLI Waves, 2013, 32(1): 23‑27. (in Chinese) | |
24 | 宋崧, 王学田, 邓甲昊. 被动毫米波成像系统的发展状况及其关键技术[J]. 科技导报, 2011, 29(19): 74‑79. |
SONG Song, WANG Xuetian, DENG Jiahao. Status and the key techniques of passive millimeter-wave imaging system[J]. Science & Technology Review, 2011, 29(19): 74‑79. (in Chinese) | |
25 | AMINEH R K, RAVAN M, KHALATPOUR A, NIKOLOVA N K. Three-dimensional near-field microwave holography using reflected and transmitted signals[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(12): 4777‑4789. |
26 | GAO J, QIN Y, DENG B, WANG H, LI X. A novel method for 3-D millimeter-wave holographic reconstruction based on frequency interferometry techniques[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 66(3): 1579‑1596. |
27 | WU H, RAVAN M, AMINEH R K. Holographic near-field microwave imaging with antenna arrays in a cylindrical setup[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 69(1): 418‑430. |
28 | BAUA S, AMINEH R K. Achieving range resolution in holographic imaging using single frequency microwave data[C]//2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Piscataway, NJ, USA: IEEE Press, 2018: 1803‑1804. |
29 | 江舸, 刘杰, 经文, 成彬彬, 周剑雄, 张健. 基于距离多普勒概念的全息雷达成像算法[J]. 红外与毫米波学报, 2017, 36(3): 367‑375. |
JIANG Ge, LIU Jie, JING Wen, CHENG Bin-Bin, ZHOU Jian-Xiong, ZHANG Jian. A range-doppler algorithm for holographic radar imaging[J]. J Infrared Millim Waves, 2017, 36(3): 367‑375. (in Chinese) | |
30 | 张琳琳, 汪海勇, 吴美武, 施红燕. 基于双频融合的微波全息成像算法研究[J]. 微波学报, 2018, 34(1): 55‑59. |
ZHANG Lin-lin, WANG Hai-yong, WU Mei-wu, SHI Hong-yan. Microwave holographic imaging algorithm based on two-frequency[J]. Journal of Microwaves, 2018, 34(1): 55‑59. (in Chinese) | |
31 | GUO Y, WANG D, TIAN C. Research on sensing matrix characteristics in microwave staring correlated imaging based on compressed sensing[C]//2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings. Piscataway, NJ, USA: IEEE Press, 2014: 195‑200. |
32 | GUO Y, MA Y, WANG D. A novel microwave staring imaging method based on short-time integral stochastic radiation fields[C]//2013 IEEE International Conference on Imaging Systems and Techniques(IST). Piscataway, NJ, USA: IEEE Press, 2013: 425‑430. |
33 | ZHANG J, JIANG Z, YUAN B, GUO Y, WANG D. Improved performance of microwave staring correlated imaging by coherent integration[C]//2020 International Symposium on Antennas and Propagation(ISAP). Piscataway, NJ, USA: IEEE Press, 2021: 111‑112. |
34 | YANG Y, YUAN B, LU G, GUO Y. Microwave staring correlated imaging for maneuvering target based on sparse bayesian learning[C]//2020 IEEE 5th International Conference on Signal and Image Processing(ICSIP). Piscataway, NJ, USA: IEEE Press, 2020: 401‑406. |
35 | 刘波, 张健霖, 王东进. 基于空间分布熵的随机辐射源布局优化[J]. 现代雷达, 2019, 41(3): 21‑26. |
LIU Bo, ZHANG Jianlin, WANG Dongjin. Distribution optimization of stochastic radiation source based on spatial distribution entropy[J]. Modern Radar, 2019, 41(3): 21 ‑26. (in Chinese) | |
36 | 陈建平, 朱文贵, 张刚. 一种微波关联成像的新方法[J]. 海军航空工程学院学报, 2012, 27(2): 196‑198. |
CHEN Jian-ping, ZHU Wen-gui, ZHANG Gang. A new method of microwave relating imaging[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(2): 196‑198. (in Chinese) | |
37 | 张继龙, 赵国庆, 韩英臣. 微波透镜成像技术在目标识别中的应用研究[J]. 中国电子科学研究院学报, 2011, 6(6): 639‑642. |
ZHANG Ji-long, ZHAO Guo-qing, HAN Ying-chen. Development of microwave lens imaging technique in radar target identification[J]. Journal of China Academy of Electronics and Information Technology, 2011, 6(6): 639 ‑642. (in Chinese) | |
38 | 邓艳妮, 张麟兮. 一种基于虚拟数字透镜的微波成像方法[C]//2017年全国天线年会论文集(下册). 西安: 西安电子科技大学出版社, 2017: 499‑501. |
DENG Yanni, ZHANG Linxi. A microwave imaging method based on virtual digital lens[C]//Proceedings of 2017 National Antenna Annual Conference (Volume II). Xi'an, China: Xidian University Press, 2017: 499‑501. (in Chinese) | |
39 | 王栋, 张继龙, 许海波. 阵列数字成像技术及其应用[J]. 中国电子科学研究院学报, 2021, 16(1): 51‑55. |
WANG Dong, ZHANG Ji-long, XU Hai-bo. Digital imaging technology of array antenna and its application[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(1): 51‑55. (in Chinese) | |
40 | 张艺恒, 张继龙, 宋雨花, 王栋. 微波阵列快速成像方法:CN112612024A[P]. 2021-04-06. |
41 | ZHANG J, WANG D. A novel fast imaging method for microwave array[C]//2021 International Conference on Microwave and Millimeter Wave Technology(ICMMT). Piscataway, NJ, USA: IEEE Press, 2021: 1‑3. |
[1] | 李钦, 刘伟, 牛朝阳, 宝音图, 惠周勃. 低信噪比下基于分裂EfficientNet网络的雷达信号调制方式识别[J]. 电子学报, 2023, 51(3): 675-686. |
[2] | 杨威, 李玮杰, 刘永祥, 黎湘. 基于测地线流式核的雷达目标高分辨距离像鲁棒识别方法[J]. 电子学报, 2023, 51(3): 527-536. |
[3] | 王俊杰, 冯德军, 隋冉, 邢世其, 肖顺平. 基于非周期PSS的SAR目标特征操控方法研究[J]. 电子学报, 2023, 51(3): 564-572. |
[4] | 阚庆云, 许京伟, 廖桂生. 和差天线空时自适应测角方法及性能分析[J]. 电子学报, 2023, 51(1): 42-49. |
[5] | 包中华, 卢建斌, 田永华, 田树森. 密集杂波背景下雷达微弱海面目标的修正Hough变换TBD检测新方法[J]. 电子学报, 2022, 50(7): 1735-1743. |
[6] | 鲍加迪, 李云杰, 朱梦韬, 张蔚. 非理想观测下的多功能雷达工作状态在线切换点检测方法[J]. 电子学报, 2022, 50(6): 1291-1300. |
[7] | 张力文, 聂俊丽. 利用改进的f-k滤波方法压制探地雷达中的线性干扰[J]. 电子学报, 2022, 50(6): 1444-1450. |
[8] | 张春杰, 刘俞辰, 司伟建. 基于多级箱与深度森林的雷达信号分选算法[J]. 电子学报, 2022, 50(6): 1351-1358. |
[9] | 利强, 张伟, 金秋园, 姚欣. 基于知识原型网络的小样本多功能雷达工作模式识别[J]. 电子学报, 2022, 50(6): 1344-1350. |
[10] | 吕明久, 马建朝, 韦旭, 陈文峰, 杨军, 马晓岩. 基于矩阵化原子范数的高频雷达距离-多普勒二维估计方法[J]. 电子学报, 2022, 50(5): 1150-1158. |
[11] | 张云, 化青龙, 姜义成, 徐丹. 基于混合型复数域卷积神经网络的三维转动舰船目标识别[J]. 电子学报, 2022, 50(5): 1042-1049. |
[12] | 李淑慧, 邓志红, 冯肖雪, 潘峰. 强杂波背景下基于变分贝叶斯推理的机载雷达目标跟踪算法[J]. 电子学报, 2022, 50(5): 1089-1097. |
[13] | 罗忠涛, 严美慧, 卢琨, 夏杭. 超视距雷达中射频干扰仿真与距离-多普勒图检测方法[J]. 电子学报, 2022, 50(5): 1174-1180. |
[14] | 李纪三, 纪彦星, 曹鼎, 刘溶, 任渊. 基于广义时间窗的旋转相控阵雷达资源调度算法[J]. 电子学报, 2022, 50(5): 1050-1057. |
[15] | 张亮, 张翔宇, 王国宏. Keystone变换实现方法研究[J]. 电子学报, 2022, 50(5): 1218-1226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||