电子学报 ›› 2022, Vol. 50 ›› Issue (3): 608-618.DOI: 10.12263/DZXB.20210567

• 学术论文 • 上一篇    下一篇

基于改进关键帧选取策略的快速PL-SLAM算法

陈孟元1,2, 丁陵梅1, 张玉坤1   

  1. 1.安徽工程大学电气工程学院, 安徽 芜湖 241000
    2.高端装备先进感知与智能控制教育部重点实验室,安徽 芜湖 241000
  • 收稿日期:2021-05-06 修回日期:2021-06-10 出版日期:2022-03-25 发布日期:2022-03-25
  • 作者简介:陈孟元 男,1984年1月生于安徽芜湖. 现为安徽工程大学电气工程学院副教授,硕士生导师.获安徽省科学技术奖一等奖. 主要研究方向为移动机器人SLAM、目标跟踪及路径规划.E-mail:mychen@ahpu.edu.cn
    丁陵梅 女,1994年12月出生于江苏省泰州市.现为安徽工程大学电气工程学院硕士研究生.研究方向为移动机器人视觉SLAM算法. E-mail:1425288603@qq.com
    张玉坤 男,1995年5出生于安徽省亳州市. 现为安徽工程大学电气工程学院硕士研究生. 研究方向为移动机器人视觉SLAM算法. E-mail:1728443478@qq.com
  • 基金资助:
    国家自然科学基金(61903002);芜湖市科技计划项目(2020yf59);安徽工程大学-鸠江区产业协同创新专项基金(2021cyxtb8);安徽工程大学中青年拔尖人才项目

Fast PL-SLAM Algorithm Based on Improved Keyframe Extraction Strategy

CHEN Meng-yuan1,2, DING Ling-mei1, ZHANG Yu-kun1   

  1. 1.School of Electrical Engineering,Anhui Polytechnic University,Wuhu,Anhui 241000,China
    2.Key Laboratory of Advanced Perception and Intelligent Control of High?end Equipment,Wuhu,Anhui 241000,China
  • Received:2021-05-06 Revised:2021-06-10 Online:2022-03-25 Published:2022-03-25

摘要:

针对PL-SLAM(Point and Line Simultaneous Localization And Mapping)算法在稠密场景下同时使用点线特征造成特征计算冗余,以及曲线运动时漏选关键帧等问题,提出一种基于改进关键帧选取策略的快速PL-SLAM算法(Improved keyframe extraction strategy-based Fast PL-SLAM algorithm, IFPL-SLAM).该算法引入一种基于信息熵引导的位姿跟踪决策,使用信息熵评价优先提取的特征点,依据评价结果决策点线特征的融合使用方式,避免了在纹理稠密场景下点线特征同时使用造成数据冗余,提高了算法的实时性;与此同时,为避免曲线运动时漏选关键帧,采用逆向索引关键帧选取策略补充在曲线运动中漏选的关键帧,提高了闭环的准确率和定位精度.在公开的KITTI数据集和TUM数据集中进行测试,测试结果表明本文算法的运行时间与PL-SLAM算法相比减少了16.0%,绝对轨迹误差相比于PL-SLAM算法缩小了23.4%,表现出了良好的构图能力.

关键词: 点线特征, 位姿估计, 信息熵, 关键帧, 逆向索引, 同时定位与地图构建

Abstract:

To address the problems that PL-SLAM(Point and Line Simultaneous Localization And Mapping) algorithm uses point and line features at the same time in dense scenes, which cause redundancy in feature calculation, and misses keyframe selection during curve motion, an IFPL-SLAM(Improved keyframe extraction strategy-based Fast PL-SLAM) algorithm is proposed. The algorithm introduces an information entropy-guided bit tracking decision, evaluates the priority extracted feature points using information entropy, and decides the fusion of point and line features based on the evaluation results, which avoids data redundancy caused by the simultaneous use of point and line features in dense texture scenes and improves the real-time performance of the algorithm. At the same time, in order to avoid missing keyframes during curve motion, the inverse index keyframe selection strategy is used to supplement the keyframes missed during curve motion, which improves the accuracy and positioning precision of the closed loop. The test results on the publicly available KITTI dataset and TUM dataset show that the running time of the algorithm proposed is reduced by 16.0% compared to the PL-SLAM algorithm, and the localization accuracy is increased by 23.4% compared to PL-SLAM, which exhibits a good mapping capability.

Key words: point and line features, position estimation, information entropy, keyframe, inverse index, simultaneous localization and mapping

中图分类号: