1 |
CUTKOSKY A. Parameter-free, dynamic, and strongly-adaptive online learning[C]//Proceedings of the 37th International Conference on Machine Learning. Virtual Event: ICML, 2020: 2250-2259.
|
2 |
ZINKEVICH M. Online convex programming and generalized infinitesimal gradient ascent[C]//Proceedings of the Twentieth International Conference on International Conference on Machine Learning. Washington DC: ICML,2003: 928-935.
|
3 |
HAZAN E, KALAI A, KALE S, et al. Logarithmic regret algorithms for online convex optimization[C]//Proceedings of 19th Annual Conference on Learning Theory(COLT). Berlin, Heidelberg: Springer, 2006: 499-513.
|
4 |
SHAMIR O, ZHANG T. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes[C]//Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28. Atlanta: ICML, 2013: I-71-I-79.
|
5 |
AGARWAL A, BARTLETT P L, RAVIKUMAR P, et al. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization[J]. IEEE Transactions on Information Theory, 2012, 58(5): 3235-3249.
|
6 |
陶卿, 朱烨雷, 罗强, 等. 一种基于Comid的非光滑损失随机坐标下降方法[J]. 电子学报, 2013, 41(4): 768-775.
|
|
TAO Q, ZHU Y L, LUO Q, et al. A new comid-based stochastic coordinate descent method for non-smooth losses[J]. Acta Electronica Sinica, 2013, 41(4): 768-775. (in Chinese)
|
7 |
HAZAN E, KALE S. Beyond the regret minimization barrier: Optimal algorithms for stochastic strongly-convex optimization[J]. Journal of Machine Learning Research, 2011: 421-436.
|
8 |
RAKHLIN A, SHAMIR O, SRIDHARAN K. Making gradient descent optimal for strongly convex stochastic optimization[C]//Proceedings of the 29th International Conference on Machine Learning(ICML). Edinburgh: ICML, 2012: 1571-1578.
|
9 |
LACOSTE-JULIEN S, SCHMIDT M, BATCH F. A Simpler Approach to Obtaining an convergence rate for projected stochastic subgradient descent[EB/OL].(2012-12-10). .
|
10 |
邵言剑, 陶卿, 姜纪远, 等. 一种求解强凸优化问题的最优随机算法[J]. 软件学报, 2014, 25(9): 2160-2171.
|
|
SHAO Y J, TAO Q, JIANG J Y, et al. Stochastic algorithm with optimal convergence rate for strongly convex optimization problems[J]. Journal of Software, 2014, 25(9): 2160-2171. (in Chinese)
|
11 |
CUTKOSKY A. Anytime online-to-batch, optimism and acceleration[C]//Proceedings of the 36th International Conference on Machine Learning(ICML). Long Beach: ICML, 2019: 1446-1454.
|
12 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//Proceedings of the 3th International Conference on Learning Representations(ICLR). San Diego: ICLR, 2015: 1-13.
|
13 |
TIMOTHY D. Incorporating Nesterov momentum into Adam[EB/OL].(2015-12-12)..
|
14 |
CHEN J H, ZHOU D R, TANG Y Q, et al. Closing the generalization gap of adaptive gradient methods in training deep neural networks[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2020: 3267-3275.
|
15 |
TAO Wei, LONG Sheng, WU Gao-wei, et al. The role of momentum parameters in the optimal convergence of adaptive Polyak's heavy-ball methods[EB/OL].(2021-02-15). .
|
16 |
REDDI S J, KALE S, KUMAR S. On the convergence of Adam and Beyond[EB/OL].(2019-04-19). .
|
17 |
MUKKAMALA M C, HEIN M. Variants of RMSProp and Adagrad with logarithmic regret bounds[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: ICML, 2017: 2545-2553.
|
18 |
DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7): 257-269.
|
19 |
CHEN Zai-yi, XU Yi, CHEN En-hong, et al. SADAGRAD: Strongly adaptive stochastic gradient methods[C]//Proceedings of the 35th International Conference on Machine Learning(ICML). Stockholm: ICML, 2018: 912-920.
|
20 |
WANG Guang-hui, LU Shi-yin, et al. SAdam: A variant of Adam for strongly convex functions[EB/OL].(2019-05-08). .
|
21 |
SHALEV-SHWARTZ S, SINGER Y, SREBRO N, et al. Pegasos: primal estimated sub-gradient solver for SVM[J]. Mathematical Programming, 2011, 127(1): 3-30.
|
22 |
沈卉卉, 李宏伟. 基于动量方法的受限玻尔兹曼机的一种有效算法[J]. 电子学报, 2019, 47(1): 176-182.
|
|
SHEN H H, LI H W. An effective algorithm of restricted boltzmann machine based on momentum method[J]. Acta Electronica Sinica, 2019, 47(1): 176-182. (in Chinese)
|
23 |
姜纪远, 陶卿, 邵言剑, 等. 随机COMID的瞬时收敛速率分析[J]. 电子学报, 2015, 43(9): 1850-1858.
|
|
JIANG J Y, TAO Q, SHAO Y J, et al. The analysis of convergence rate of individual COMID iterates[J]. Acta Electronica Sinica, 2015, 43(9): 1850-1858. (in Chinese)
|
24 |
邹军华, 段晔鑫, 任传伦, 等. 基于噪声初始化、Adam-Nesterov方法和准双曲动量方法的对抗样本生成方法[J]. 电子学报, 2022, 50(1): 207-216.
|
|
ZOU J H, DUAN Y X, REN C L, et al. Perturbation initialization, Adam-Nesterov and quasi-hyperbolic momentum for adversarial examples[J]. Acta Electronica Sinica, 2022, 50(1): 207-216. (in Chinese)
|
25 |
罗会兰, 袁璞, 童康. 基于深度学习的显著性目标检测方法综述[J]. 电子学报, 2021, 49(7): 1417-1427.
|
|
LUO H L, YUAN P, TONG K. Review of the methods for salient object detection based on deep learning[J]. Acta Electronica Sinica, 2021, 49(7): 1417-1427. (in Chinese)
|