1 |
TANG J. Computational models for social network analysis: A brief survey[C]//Proceedings of the 26th International Conference on World Wide Web Companion- WWW'17 Companion. New York: ACM Press, 2017: 921-925.
|
2 |
CEN Y K, ZOU X, ZHANG J W, et al. Representation learning for attributed multiplex heterogeneous network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1358-1368.
|
3 |
SUN G L. New progress in research and application of machine learning[J]. Chinese Journal of Electronics, 2020, 29(6): 991-991.
|
4 |
SUN X, SONG Z H, DONG J Y, et al. Network structure and transfer behaviors embedding via deep prediction model[C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5041-5048.
|
5 |
刘露, 胡封晔, 牛亮, 等. 异质网络中基于节点影响力的相似度度量方法[J]. 电子学报, 2019, 47(9): 1929-1936.
|
|
LIU L, HU F Y, NIU L, et al. Node influence based similarity measure method in heterogeneous network[J]. Acta Electronica Sinica, 2019, 47(9): 1929-1936. (in Chinese)
|
6 |
WANG Z, YE X, WANG C, et al. RSDNE: Exploring relaxed similarity and dissimilarity from completely-imbalanced labels for network embedding[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 475-482.
|
7 |
LAI Y Y, NEVILLE J, GOLDWASSER D. TransConv: relationship embedding in social networks[C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 4130-4138.
|
8 |
国琳, 左万利. 基于兴趣图谱的用户兴趣分布分析及专家发现[J]. 电子学报, 2015, 43(8): 1561-1567.
|
|
GUO L, ZUO W L. Analysis of user interest distribution and expert finding based on interest graphs[J]. Acta Electronica Sinica, 2015, 43(8): 1561-1567. (in Chinese)
|
9 |
ASSUNÇÃO F, LOURENÇO N, MACHADO P, et al. DENSER: deep evolutionary network structured representation[J].Genetic Programming and Evolvable Machines, 2019, 20(1): 5-35.
|
10 |
ZHANG P Z, GONG M G, ZHANG H, et al. DRLnet: deep difference representation learning network and an unsupervised optimization framework[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 3413-3419.
|
11 |
ZHANG D K, YIN J, ZHU X Q, et al. Homophily, structure, and content augmented network representation learning[C]//2016 IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 609-618.
|
12 |
CAO S, LU W, XU Q. Deep neural networks for learning graph representations[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1145-1152.
|
13 |
张昱, 刘开峰, 张全新, 等. 基于组合-卷积神经网络的中文新闻文本分类[J]. 电子学报, 2021, 49(6): 1059-1067.
|
|
ZHANG Y, LIU K F, ZHANG Q X, et al. A combined-convolutional neural network for Chinese news text classification[J]. Acta Electronica Sinica, 2021, 49(6): 1059-1067. (in Chinese)
|
14 |
TANG J L, GAO H J, HU X, et al. Exploiting homophily effect for trust prediction[C]//Proceedings of the sixth ACM International Conference on Web Search And Data Mining-WSDM'13. New York: ACM Press, 2013: 53-62.
|
15 |
CHENG K W, LI J D, LIU H. Unsupervised feature selection in signed social networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 777-786.
|
16 |
WANG X, Cui P, WANG J, et al. Community preserving network embedding [C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, Palo Alto, CA: AAAI Press,2017: 203-209.
|
17 |
QIU J Z, DONG Y X, MA H, et al. Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 459-467.
|
18 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
|
19 |
TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[EB/OL].(2015-05-12). .
|
20 |
TANG J, QU M, MEI Q Z. PTE: predictive text embedding through large-scale heterogeneous text networks[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1165-1174.
|
21 |
GROVER A, LESKOVEC J. node2vec: Scalable feature learning for networks[C]//Proceedings. International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2016: 855-864.
|
22 |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. Cambridge, USA: MIT Press, 2014:2672-2680.
|
23 |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL].(2014-11-06). .
|
24 |
Tolstikhin I, Gelly S, Bousquet O. AdaGAN: Boosting generative models[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc, 2017: 5430-5439.
|
25 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Gan[EB/OL]. (2017-01-26). .
|
26 |
MAO X D, LI Q, XIE H R, et al. Least Squares generative adversarial networks[C]//2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821.
|
27 |
权宇, 李志欣, 张灿龙, 等. 融合深度扩张网络和轻量化网络的目标检测模型[J]. 电子学报, 2020, 48(2): 390-397.
|
|
QUAN Y, LI Z X, ZHANG C L, et al. Fusing deep dilated convolutions network and light-weight network for object detection[J]. Acta Electronica Sinica, 2020, 48(2): 390-397. (in Chinese)
|
28 |
RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. struc2vec: learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 385-394.
|