1 |
罗会兰, 张云. 基于深度网络的图像语义分割综述[J]. 电子学报, 2019, 47(10): 2211-2220.
|
|
LUOH L, ZHANGY. A survey of image semantic segmentation based on deep network[J]. Acta Electronica Sinica, 2019, 47(10): 2211-2220. (in Chinese)
|
2 |
徐频捷, 陈逸杰, 李之南. 基于事件驱动的车道线识别算法研究[J]. 电子学报, 2021, 49(7): 1379-1385.
|
|
XUP J, CHENY J, LIZ N, et al. Research on event-driven lane recognition algorithms[J]. Acta Electronica Sinica, 2021, 49(7): 1379-1385. (in Chinese)
|
3 |
GEIGERA, LENZP, URTASUNR. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012: 3354-3361.
|
4 |
LONGJ, SHELHAMERE, DARRELLT. Fully Convolutional Networks for Semantic Segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 3431-3440.
|
5 |
CHENL C, PAPANDREOUG, KOKKINOSI, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
|
6 |
BADRINARAYANANV, KENDALLA, CIPOLLAR. SegNet: A deep convolutional encoder-decoder architecture for Image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
|
7 |
NOH, H, HONG, S, HANB. Learning deconvolution network for semantic segmentation[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1520-1528.
|
8 |
WUZ F, SHENC H, A VAN DENHENGEL. Wider or deeper: Revisiting the ResNet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119-133.
|
9 |
HEK M, ZHANGX Y, RENS Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 770-778.
|
10 |
ZHAOH S, SHIJ P, QIX J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 6230-6239.
|
11 |
ZHAOH S, QIX J, SHENX Y, et al. ICNet for real-time semantic segmentation on high-resolution images[C].//European Conference on Computer Vision. Munich: Springer, 2018: 418-434.
|
12 |
ORSICM, KRESOI, BEVANDICP, et al. In defense of pre-trained ImageNet architectures for real-time semantic segmentation of road-driving images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA: IEEE, 2019: 12599-12608.
|
13 |
WUZ F, SHENC H, HENGELA V. Real-time semantic image segmentation via spatial sparsity[EB/OL]. (2017-10-01)[2021]. .
|
14 |
孟琭, 徐磊, 郭嘉阳. 一种基于改进的MobileNetV2网络语义分割算法[J]. 电子学报, 2020, 48(9): 1769-1776.
|
|
MENGL, XUL, GUOJ Y. Semantic segmentation algorithm based on improved MobileNetV2[J]. Acta Electronica Sinica, 2020, 48(9): 1769-1776. (in Chinese)
|
15 |
PASZKEA, CHAURASIAA, KIMS, et al. ENet: A deep neural network architecture for real-time semantic segmentation[EB/OL]. (2016-06-07)[2021]. .
|
16 |
CHENL C, PAPANDREOUG, SCHROFFF, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-10-05)[2021]. .
|
17 |
SZEGEDYC, LIUW, JIAY Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, MA: IEEE, 2015:1-9.
|
18 |
IOFFES, SZEGEDYC. Batch normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-02)[2021]. .
|
19 |
SZEGEDYC, IOFFES, VANHOUCKEV, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//AAAI'17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 4278-4284.
|
20 |
LIH C, XIONGP F, FANH Q, et al. DFANet: Deep feature aggregation for real-time semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA: IEEE, 2019: 9514-9523.
|
21 |
YUC Q, GAOC X, WANGJ B, et al. BiSeNet V2: Bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11): 3051-3068.
|
22 |
NIRKINY, WOLFL, HASSNE R T. HyperSeg: Patch-wise hypernetwork for real-time semantic segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, TN: IEEE, 2021: 4061-4070.
|
23 |
HUJ, SHENL, ALBANIES, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Recognition and Machine Intelligence, 2020, 42(8): 2011-2023.
|
24 |
HOUQ B, ZHANGL, CHENGM M, et al. Strip pooling: Rethinking spatial pooling for scene parsing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle, WA: IEEE, 2020: 4002-4011.
|
25 |
DWIBEDID, MISRAI, Cut HEBERTM., paste and learn: Surprisingly easy synthesis for instance detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1310-1319.
|
26 |
DVORNIKN, MAIRALJ, SCHMIDC. Modeling visual context is key to augmenting object detection datasets[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 375-391.
|
27 |
YANGZ G, YUH S, FENGM T, et al. Small object augmentation of urban scenes for real-time semantic segmentation[J]. IEEE Transactions on Image Processing, 2020, 29: 5175-5190.
|
28 |
KRIZHEVSKYA, SUTSKEVERI, HINTONG E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
29 |
KESKARN S, SOCHERR. Improving generalization performance by switching from Adam to SGD[EB/OL]. (2017-10-20)[2021]. .
|
30 |
CORDTSM, OMRANM, RAMOSS, et al. The cityscapes dataset for semantic urban scene understanding[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV: IEEE, 2016: 3213-3223.
|
31 |
BROSTOWG J, FAUQUEURJ, CIPOLLAR. Semantic object classes in video: A high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2): 88-97.
|
32 |
MAZZINID. Guided upsampling network for real-time semantic segmentation[EB/OL]. (2018-07-19)[2021]. .
|
33 |
MEHTAS, RASTEGARIM, CASPIA, et al. ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//European Conference on Computer Vision. Munich: Springer, 2018: 3567-3578.
|
34 |
MEHTAS, RASTEGARIM, SHAPIROL, et al. ESPNetv2: A light-weight, power efficient, and general purpose convolutional neural network[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA: IEEE, 2019: 9182-9192.
|
35 |
ROMERAE, ALVAREZJ M, BERGASAL M, et al. ERFNet: Efficient residual factorized ConvNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018,19(1): 263-272.
|
36 |
YUC Q, WANGJ B, PENGC, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]//European Conference on Computer Vision. Munich: Springer, 2018: 334-349.
|
37 |
YUF, KOLTUNV. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2016-04-30)[2021]. .
|
38 |
CHENL C, PAPANDREOUSG, KOKKINOSI, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
|
39 |
GHIASIG, FOWLKESC C. Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation[C]//European Conference on Computer Vision. Amsterdam: Springer, 2016: 519-534.
|
40 |
LING S, MILANA, SHENC H, et al. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 5168-5177.
|
41 |
TREMLM, ARJONA-MEDINAJ, UNTERTHINERT, et al. Speeding up semantic segmentation for autonomous driving[C]//NIPS 2016-29th Conference on Neural Information Processing Systems. Barcelona: NIPS Workshop-mlits, 2016,123:312-331.
|
42 |
LIG, YUNI, KIMJ, et al. DABNet: depth-wise asymmetric bottleneck for real-time semantic segmentation[J]. CoRR, 2019, abs/1907.11357. .
|
43 |
WANGP Q, CHENP F, YUANY, et al. Understanding convolution for semantic segmentation[J]//2018 IEEE Winter Conference on Applications of Computer Vision(WACV). Lake Tahoe, NV: IEEE, 2018: 1451-1460.
|