1 |
JIANG S, FERREIRA J, GONZALEZ M C. Activity-based human mobility patterns inferred from mobile phone data: A case study of Singapore[J]. IEEE Transactions on Big Data, 2017, 3(2): 208-219.
|
2 |
CHANG S, LI C, ZHU H Z, et al. Revealing privacy vulnerabilities of anonymous trajectories[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12061-12071.
|
3 |
AUGUSTIN D, HOFMANN M, KONIGORSKI U. Motion pattern recognition for maneuver detection and trajectory prediction on highways[C]//2018 IEEE International Conference on Vehicular Electronics and Safety. Piscataway: IEEE, 2018: 1-8.
|
4 |
ZHANG D Z, LEE K, LEE I. Mining hierarchical semantic periodic patterns from GPS-collected spatio-temporal trajectories[J]. Expert Systems With Applications, 2019, 122: 85-101.
|
5 |
GURSOY M E, LIU L, TRUEX S, et al. Differentially private and utility preserving publication of trajectory data[J]. IEEE Transactions on Mobile Computing, 2019, 18(10): 2315-2329.
|
6 |
汪成亮, 黄心田. 智能环境下基于雾计算的推理节点优化分配研究[J]. 电子学报, 2020, 48(1): 35-43.
|
|
WANG C L, HUANG X T. Study on optimal allocation of inference nodes for fog computing in smart environment[J]. Acta Electronica Sinica, 2020, 48(1): 35-43. (in Chinese)
|
7 |
SHOU Z Y, DI X. Similarity analysis of frequent sequential activity pattern mining[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 122-143.
|
8 |
LEE J, HAN J, WHANG K. Trajectory clustering: A partition-and-group framework[C]//Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2007:593-604.
|
9 |
CHEN W, JI M H, WANG J M. T-DBSCAN: A spatiotemporal density clustering for GPS trajectory segmentation[J]. International Journal of Online and Biomedical Engineering (IJOE), 2014, 10(6): 19.
|
10 |
BIRANT D, KUT A. ST-DBSCAN: An algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 2007, 60(1): 208-221.
|
11 |
ANSARI M Y, MAINUDDIN, AHMAD A, et al. Spatiotemporal trajectory clustering: A clustering algorithm for spatiotemporal data[J]. Expert Systems with Applications, 2021, 178: 115048.
|
12 |
HONG Z H, CHEN Y, MAHMASSANI H S. Recognizing network trip patterns using a spatio-temporal vehicle trajectory clustering algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2548-2557.
|
13 |
NADERIVESAL S, KULIK L, BAILEY J. An effective and versatile distance measure for spatiotemporal trajectories[J].Data Mining and Knowledge Discovery, 2019, 33(3): 577-606.
|
14 |
XU F L, XIA T, CAO H C, et al. Detecting popular temporal modes in population-scale unlabelled trajectory data[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(1): 46.
|
15 |
于彦伟, 贾召飞, 曹磊, 等. 面向位置大数据的快速密度聚类算法[J]. 软件学报, 2018, 29(8): 2470-2484.
|
|
YU Y W, JIA Z F, CAO L, et al. Fast density-based clustering algorithm for location big data[J]. Journal of Software, 2018, 29(8): 2470-2484. (in Chinese)
|
16 |
DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends® in Theoretical Computer Science, 2013, 9(3/4): 211-407.
|
17 |
HE X, CORMODE G, MACHANAVAJJHALA A. DPT: differentially private trajectory synthesis using hierarchical reference systems[J]. Proceedings of the VLDB Endowment, 2015, 8(11):1154-1165.
|
18 |
TERROVITIS M, POULIS G, MAMOULIS N, et al. Local suppression and splitting techniques for privacy preserving publication of trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(7): 1466-1479.
|
19 |
霍峥, 孟小峰. 一种满足差分隐私的轨迹数据发布方法[J]. 计算机学报, 2018, 41(2): 400-412.
|
|
HUO Z, MENG X F. A trajectory data publication method under differential privacy[J]. Chinese Journal of Computers, 2018, 41(2): 400-412. (in Chinese)
|
20 |
ZHAO X D, PI D C, CHEN J F. Novel trajectory privacy-preserving method based on prefix tree using differential privacy[J]. Knowledge-Based Systems, 2020, 198: 105940.
|