电子学报 ›› 2022, Vol. 50 ›› Issue (5): 1243-1254.DOI: 10.12263/DZXB.20210637
田春生1,2, 陈雷2, 王源1, 王硕2, 周婧2, 张瑶伟2, 庞永江2, 周冲2, 马筱婧2, 杜忠2, 薛钰2
收稿日期:
2021-05-18
修回日期:
2021-08-24
出版日期:
2022-05-25
发布日期:
2022-06-18
通讯作者:
陈雷
作者简介:
基金资助:
TIAN Chun-sheng1,2, CHEN Lei2, WANG Yuan1, WANG Shuo2, ZHOU Jing2, ZHANG Yao-wei2, PANG Yong-jing2, ZHOU Chong2, MA Xiao-jing2, DU Zhong2, XUE Yu2
Received:
2021-05-18
Revised:
2021-08-24
Online:
2022-05-25
Published:
2022-06-18
Contact:
CHEN Lei
摘要:
随着大规模集成电路器件复杂度与容量的不断提升,现场可编程门阵列(Field Programmable Gate Array, FPGA)以高度的并行、可定制和可重构的特性得到了广泛的关注与应用. 在制约FPGA发展的众多因素中,最为关键的便是电子设计自动化(Electronic Design Automation, EDA)技术,作为FPGA EDA流程中的关键环节,布局和布线技术的研究对于FPGA的重要性不言而喻. 本文综述了面向FPGA的布局和布线技术,包括基于划分的布局、基于启发式的布局、基于解析式的布局、FPGA串行布线和FPGA并行布线等技术,分析对比了不同技术方法的优缺点,在此基础上,本文还展望了未来FPGA布局和布线技术的发展趋势,将为FPGA未来健康可持续的发展提供有力支撑.
中图分类号:
田春生, 陈雷, 王源, 王硕, 周婧, 张瑶伟, 庞永江, 周冲, 马筱婧, 杜忠, 薛钰. 面向FPGA的布局与布线技术研究综述[J]. 电子学报, 2022, 50(5): 1243-1254.
TIAN Chun-sheng, CHEN Lei, WANG Yuan, WANG Shuo, ZHOU Jing, ZHANG Yao-wei, PANG Yong-jing, ZHOU Chong, MA Xiao-jing, DU Zhong, XUE Yu. Review on Technology of Placement and Routing for the FPGA[J]. Acta Electronica Sinica, 2022, 50(5): 1243-1254.
布局技术 | 优势 | 不足 |
---|---|---|
基于划分的布局技术 | 将复杂的电路设计分割为较简单的电路设计,能够快速对局部电路进行处理,收敛速度快 | 布局质量上存在劣势,容易陷入局部最优解 |
基于启发式的布局技术 | 相对于最优算法而提出,在时间允许的情况下,能够获得布局的最优解 | 运行时间长,布局收敛速度慢 |
基于解析式的布局技术 | 完全依赖于数学方法,最终的布局质量能够通过数学分析来证明,具有较高的布局质量,收敛较快 | 较高的数学功底以抽象FPGA布局问题,不同的FPGA抽象形式不同,不能通用 |
表1 FPGA布局技术总结
布局技术 | 优势 | 不足 |
---|---|---|
基于划分的布局技术 | 将复杂的电路设计分割为较简单的电路设计,能够快速对局部电路进行处理,收敛速度快 | 布局质量上存在劣势,容易陷入局部最优解 |
基于启发式的布局技术 | 相对于最优算法而提出,在时间允许的情况下,能够获得布局的最优解 | 运行时间长,布局收敛速度慢 |
基于解析式的布局技术 | 完全依赖于数学方法,最终的布局质量能够通过数学分析来证明,具有较高的布局质量,收敛较快 | 较高的数学功底以抽象FPGA布局问题,不同的FPGA抽象形式不同,不能通用 |
分类 | Benchmarks | 串行对比基准 | 并行模型 | 同步方法 | 确定性 | 可扩展性 | 文献 | |
---|---|---|---|---|---|---|---|---|
粗粒度 | 字典序法 | alu4, s1A | PathFinder | 分布式内存 | 消息传递 | 不具备 | 扩展性低 | [ |
负载均衡法 | MCNC, VPR 5.0 | VPR 5.0 | 分布式内存 | 消息传递 | 具备 | 扩展性低 | [ | |
迭代划分法 | VPR 7.0 | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | |
VPR 7.0 | VPR 7.0 | 分布式内存 | 消息传递 | 具备 | 扩展性低 | [ | ||
VPR 7.0 | VPR 7.0 | 分布式内存 | 消息传递 | 具备 | 扩展性高 | [ | ||
VPR 7.0, Titan | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
细粒度 | Posix线程 | VPR 8.0 | VPR 8.0 | 共享式内存 | 消息传递 | 具备 | 扩展性高 | [ |
MCNC, VPR5.0 | VPR5.0 | 分布式内存 | 同步路障 | 具备 | 扩展性低 | [ | ||
VPR 7.0 | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
VPR 7.0 | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
Galois模型 | IWLS | VPR 5.0 | 共享式内存 | 同步锁 | 不具备 | 扩展性高 | [ | |
IWLS | VPR 5.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
混合粒度 | / | Titan | VPR 7.0 | 共享式内存 | 同步锁 | 不具备 | 扩展性高 | [ |
MCNC | VPR 5.0 | 共享式内存 | 同步路障 | 具备 | 扩展性低 | [ |
表2 FPGA并行布线技术
分类 | Benchmarks | 串行对比基准 | 并行模型 | 同步方法 | 确定性 | 可扩展性 | 文献 | |
---|---|---|---|---|---|---|---|---|
粗粒度 | 字典序法 | alu4, s1A | PathFinder | 分布式内存 | 消息传递 | 不具备 | 扩展性低 | [ |
负载均衡法 | MCNC, VPR 5.0 | VPR 5.0 | 分布式内存 | 消息传递 | 具备 | 扩展性低 | [ | |
迭代划分法 | VPR 7.0 | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | |
VPR 7.0 | VPR 7.0 | 分布式内存 | 消息传递 | 具备 | 扩展性低 | [ | ||
VPR 7.0 | VPR 7.0 | 分布式内存 | 消息传递 | 具备 | 扩展性高 | [ | ||
VPR 7.0, Titan | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
细粒度 | Posix线程 | VPR 8.0 | VPR 8.0 | 共享式内存 | 消息传递 | 具备 | 扩展性高 | [ |
MCNC, VPR5.0 | VPR5.0 | 分布式内存 | 同步路障 | 具备 | 扩展性低 | [ | ||
VPR 7.0 | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
VPR 7.0 | VPR 7.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
Galois模型 | IWLS | VPR 5.0 | 共享式内存 | 同步锁 | 不具备 | 扩展性高 | [ | |
IWLS | VPR 5.0 | 共享式内存 | 同步锁 | 具备 | 扩展性高 | [ | ||
混合粒度 | / | Titan | VPR 7.0 | 共享式内存 | 同步锁 | 不具备 | 扩展性高 | [ |
MCNC | VPR 5.0 | 共享式内存 | 同步路障 | 具备 | 扩展性低 | [ |
1 | TRIMBERGER S M. Three ages of FPGAs: A retrospective on the first thirty years of FPGA technology[J]. Proceedings of the IEEE, 2015, 103(3): 318‑331. |
2 | TRIMBERGER S M. Three ages of FPGAs: a retrospective on the first thirty years of FPGA technology: this paper reflects on how Moore's law has driven the design of FPGAs through three epochs: the age of invention, the age of expansion, and the age of accumulation[J]. IEEE Solid-State Circuits Magazine, 2018, 10(2): 16‑29. |
3 | IMANI M, ZOU Z W, BOSCH S, et al. Revisiting hyperdimensional learning for FPGA and low-power architectures[C]//2021 IEEE International Symposium on High-Performance Computer Architecture(HPCA). South Korea: IEEE, 2021: 221‑234. |
4 | ZHANG J X, YANG T, LI Q Z, et al. An FPGA-based neural network overlay for ADAS supporting multi-model and multi-mode[C]//2021 IEEE International Symposium on Circuits and Systems(ISCAS). South Korea: IEEE, 2021: 1‑5. |
5 | KAN H W, LI R G, SU D D, et al. Trusted edge cloud computing mechanism based on FPGA cluster[C]//2020 IEEE 8th International Conference on Computer Science and Network Technology(ICCSNT). China: IEEE, 2020. 146‑149. |
6 | 刘公绪, 史凌峰, 辛东金. 基于FPGA的零误差大数阶乘算法的设计与实现[J]. 电子学报, 2019, 47(5): 1180‑1184. |
LIU G X, SHI L F, XIN D J. FPGA-based zero-error factorial algorithm for large integer[J]. Acta Electronica Sinica, 2019: 47(5): 1180‑1184. (in Chinese) | |
7 | 蹇强, 张培勇, 王雪洁. 一种可配置的CNN协加速器的FPGA实现方法[J]. 电子学报, 2019, 47(7): 1525‑1531. |
JIAN Q, ZHANG P Y, WANG X J. An FPGA implementation method for configurable CNN co-accelerator[J]. Acta Electronica Sinica, 2019, 47(7): 1525‑1531. (in Chinese) | |
8 | LIN Y B, JIANG Z X, GU J Q, et al. DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(4): 748‑761. |
9 | LUU J, GOEDERS J, WAINBERG M, et al. VTR 7.0: next generation architecture and CAD system for FPGAs[J]. ACM Transactions on Reconfigurable Technology and Systems, 2014, 7(2): 1‑30. |
10 | DHAR S, SINGHAL L, IYER M, et al. FPGA accelerated FPGA placement[C]//2019 29th International Conference on Field Programmable Logic and Applications(FPL). Barcelona: IEEE, 2019: 404‑410. |
11 | ZAPLETINA M A, ZHELEZNIKOV D A, GAVRILOV S V. Improving pathfinder algorithm performance for FPGA routing[C]//2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering(ElConRus). Russia: IEEE, 2021: 2054‑2057. |
12 | 王德奎. 一种利用资源协商的FPGA布局方法[J]. 西安电子科技大学学报, 2019, 46(6): 17‑22 |
WANG D K. Approach to FPGA placement using resource negotiation[J]. Journal of Xidian University, 2019, 46(6): 17‑22. (in Chinese) | |
13 | KHATKHATE A, LI C, AGNIHOTRI A R, et al. Recursive bisection based mixed block placement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, 24(5): 748‑761. |
14 | KIM, M C, LEE D J, MARKOV I L. SimPL: an effective placement algorithm[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31(1): 50‑60. |
15 | MAIDEE P, ABABEI C, BAZARGAN. Timing-driven partitioning-based placement for island style FPGAs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, 24(3): 395‑406. |
16 | FIDUCCIA C M, MATTHEYSES R M. A linear-time heuristic for improving network partitions[C]//19th Design Automation Conference. USA: IEEE, 1982: 175‑181. |
17 | KARYPIS G, KUMAR V. Parallel multilevel k-way partitioning scheme for irregular graphs[C]//Supercomputing Proceedings of the 1996 ACM/IEEE Conference on Supercomputing. USA: IEEE, 1996. 1‑1. |
18 | KARYPIS G, KUMAR V. Multilevel k-way hypergraph partitioning[C]//Proceedings 1999 Design Automation Conference (Cat. No.99CH36361). USA: IEEE, 1999: 343‑348. |
19 | KERNIGHAN B W. LIN S. An efficient heuristic procedure for partitioning graphs[J]. The Bell System Technical Journal, 1970, 49(2): 291‑307. |
20 | VEREDAS F J, CARMONA E J. FPGA placement improvement using a genetic algorithm and the routing algorithm as a cost function[C]//2018 21st Euromicro Conference on Digital System Design(DSD). Czech Republic: IEEE, 2018: 70‑76. |
21 | SADEGHI A, LIGHVAN M Z, PRINETTO P. Automatic and simultaneous floorplanning and placement in field-programmable gate arrays with dynamic partial reconfiguration based on genetic algorithm[J]. Canadian Journal of Electrical and Computer Engineering, 2020, 43(4): 224‑234. |
22 | HERATH K, PRAKASH A, JIANG G Y, et al. Ant Colony Optimization based module footprint selection and placement for lowering power in large FPGA designs[C]// 2018 International Conference on ReConFigurable Computing and FPGAs(ReConFig). Mexico: IEEE, 2018: 1‑8. |
23 | DANASSIS P, SIOZIOS K, SOUDRIS D. ANT3D: simultaneous partitioning and placement for 3-D FPGAs based on Ant Colony Optimization[J]. IEEE Embedded Systems Letters, 2016, 8(2): 41‑44. |
24 | JING C. Ant-Colony Optimization based algorithm for energy-efficient scheduling on dynamically reconfigurable systems[C]//2015 Ninth International Conference on Frontier of Computer Science and Technology. China: IEEE, 2015: 127‑134. |
25 | SARI A, PSARAKIS M. Scrubbing-aware placement for reliable FPGA systems[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 564‑576. |
26 | STEINBRUNN M, MOERKOTTE G, KEMPER A. Heuristic and randomized optimization for the join ordering problem[J]. The VLDB Journal, 1997, 6: 191‑208. |
27 | CARL S. VLSI Placement and Global Routing Using Simulated Annealing[M]. Boston, MA, USA: Springer Science & Business Media, 2012. |
28 | MURRAY K E, PETELIN O, ZHONG S, et al. VTR 8: high performance CAD and customizable FPGA architecture modelling[J]. ACM Transactions on Reconfigurable Technology and Systems, 2020, 13(2): 1‑55. |
29 | KAGAWA H, ITO Y, NAKANO K, et al. Fully-pipelined architecture for simulated annealing-based QUBO solver on the FPGA[C]//2020 Eighth International Symposium on Computing and Networking(CANDAR). Japan: IEEE, 2020: 39‑48. |
30 | BRIK S, STEFFAN J G, ANDERSON J H. Parallelizing FPGA placement using transactional memory[C]//2010 International Conference on Field-Programmable Technology. China: IEEE, 2010: 61‑69. |
31 | LUDWIN A, BETZ V. Efficient and deterministic parallel placement for FPGAs[J]. ACM Transactions on Design Automation of Electronic Systems, 2011, 16(3): 1‑23. |
32 | AN W, STEFFAN J G, BETZ V. Speeding up FPGA placement: parallel algorithms and methods[C]//2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines. USA: IEEE, 2014: 178‑185. |
33 | HU C Y, LU P, YANG M, et al. A SA-based parallel method for FPGA placement[J]. IEICE Electronics Express, 2018, 15(24): 1‑8. |
34 | VORWERK K, KENNINGS A, GREENE J W. Improving simulated annealing-based FPGA placement with directed moves[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(2): 179‑192. |
35 | BETZ V, ROSE J, MARQUARDT A. Architecture and CAD for Deep-submicron FPGAs[M]. Boston, MA, USA:Springer Science & Business Media, 2012. |
36 | HENTSCHKE R F, REIS R. Improving simulated annealing placement by applying random and greedy mixed perturbations[C]//Proceedings of the 16th Symposium on Integrated Circuits and Systems Design. Brazil: IEEE, 2003: 267‑272. |
37 | CHEN G, CONG J. Simultaneous timing-driven placement and duplication[C]//Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable Gate Arrays. Monterey, USA: ACM, 2005: 51‑59. |
38 | YUAN J Q, ZHOU X G, XIA Y S, et al. RBSA: range-based simulated annealing for FPGA placement[C]//2017 International Conference on Field Programmable Technology(ICFPT). Australia: IEEE, 2017: 1‑8. |
39 | YUAN J Q, CHEN J L, WANG L L, et al. ARBSA: adaptive range-based simulated annealing for FPGA placement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 38(12): 2330‑2342. |
40 | AI-HYARI A, SHAMLI A, MARTIN T, et al. An adaptive analytic FPGA placement framework based on deep-learning[C]//2020 ACM/IEEE 2nd Workshop on Machine Learning for CAD(MLCAD). Iceland: IEEE, 2020: 3‑8. |
41 | MURRAY K E, BETZ V. Adaptive FPGA placement optimization via reinforcement learning[C]//2019 ACM/IEEE 1st Workshop on Machine Learning for CAD(MLCAD). Canada: IEEE, 2019: 1‑6. |
42 | ELGAMMAL M A, MURRAY K E, BETZ V. Learn to place: FPGA placement using reinforcement learning and directed moves[C]//2020 IEEE International Conference on Field-Programmable Technology. USA: IEEE, 2020: 1‑6. |
43 | XU Y H, KHALID M. QPF: efficient quadratic placement for FPGAs[C]//International Conference on Field Programmable Logic and Applications. Finland: IEEE, 2005: 555‑558. |
44 | GOPALAKRISHNAN P, LI X, PILEGGI L. Architecture-aware FPGA placement using metric embedding[C]// 2006 43rd ACM/IEEE Design Automation Conference. USA: IEEE, 2006: 460‑465. |
45 | GORT M, ANDERSON J H. Analytical placement for heterogeneous FPGAs[C]//22nd International Conference on Field Programmable Logic and Applications(FPL). Norway: IEEE, 2012: 143‑150. |
46 | GESSLER F, BRISK P, STOJILOVIC M. A shared-memory parallel implementation of the RePlAce global cell placer[C]//2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded Systems(VLSID). India: IEEE, 2020: 78‑83. |
47 | LIN T H, BANERJEE P, CHANG Y W. An efficient and effective analytical placer for FPGAs[C]//2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). USA: IEEE, 2014: 1‑6. |
48 | CHEN Y C, CHEN S Y, CHANG Y W. Efficient and effective packing and analytical placement for large-scale heterogeneous FPGAs[C]//2014 IEEE/ACM International Conference on Computer-Aided Design(ICCAD). USA: IEEE, 2014: 647‑654. |
49 | ABUOWAIMER Z, MAAROUF D, MARTIN T, et al. GPlace3.0: routability-driven analytic placer for UltraScale FPGA architectures[J]. ACM Transactions on Design Automation of Electronic Systems, 2018, 23(5): 1‑33. |
50 | LI W X, DHAR S, PAN D Z. UTPlaceF: A routability-driven FPGA placer with physical and congestion aware packing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(4): 869‑882. |
51 | LI W X, PAN D Z. A new paradigm for FPGA placement without explicit packing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(11): 2113‑2126. |
52 | LI W X, LIN Y B, PAN D Z. elfPlace: Electrostatics-based placement for large-scale heterogeneous FPGAs[C]//2019 IEEE/ACM International Conference on Computer-Aided Design(ICCAD). USA: IEEE, 2019: 1‑8. |
53 | VERCRUYCE D, VANSTEENKISTE E, STROOBANDT D. Liquid: High quality scalable placement for large heterogeneous FPGAs[C]//2017 International Conference on Field Programmable Technology(ICFPT). USA: IEEE, 2017: 17‑24. |
54 | CHEN G J, PUI C W, CHOW W K, et al. RippleFPGA: Routability-driven simultaneous packing and placement for modern FPGAs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(10): 2022‑2035. |
55 | 王德奎. FPGA高效布线方法研究[D]. 西安: 西安电子科技大学, 2019. |
WANG D K. Research on Efficient FPGA Routing Algorithm[D]. Xi'an, China: Xidian University, 2019. (in Chinese) | |
56 | MCMURCHIE L, EBELING C. PathFinder: A negotiation-based performance-driven router for FPGAs[C]//Third International ACM Symposium on Field-Programmable Gate Arrays. USA: IEEE, 1995: 111‑117. |
57 | WANG D K, DUAN Z H, TIAN C, et al. A runtime optimization approach for FPGA routing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(8): 1706‑1710. |
58 | LAVIN C M. Using Hard Macros to Accelerate FPGA Compilation for Xilinx FPGAs[D]. Provo: Brigham Young University, 2012. |
59 | LAVIN C, PADILLA M, LAMPRECHT J, et al. HMFlow: Accelerating FPGA compilation with hard macros for rapid prototyping[C]//2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines. USA: IEEE, 2011: 117‑124. |
60 | COOLE J, STITT G. BPR: fast FPGA placement and routing using macroblocks[C]//Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign And System Synthesis. USA: IEEE, 2012: 275‑284. |
61 | GORT M, ANDERSION J H. Combined architecture/algorithm approach to fast FPGA routing[J]. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2013, 21(6): 1067‑1079. |
62 | FERREIRA R, ROCHA L, SANTOS A G, et al. A runtime FPGA placement and routing using low-complexity graph traversal[J]. ACM Transactions on Reconfigurable Technology and Systems, 2015, 8(2): 1‑16. |
63 | NGUYEN A H N, AONO M, HARA-AZUMI Y. FPGA-based hardware/software co-design of a bio-inspired SAT solver[J]. IEEE Access, 2020, 8: 49053‑49065. |
64 | MA S H, AMPADU P. Optimal SAT-based minimum adder synthesis of linear transformations[C]//2019 IEEE 62nd International Midwest Symposium on Circuits and Systems(MWSCAS). USA: IEEE, 2019: 335‑338. |
65 | HE A P, YU L Y, ZHANG H T, et al. A FPGA based SAT solver with high random and concurrent strategies[C]//2018 IEEE International Conference on Software Quality, Reliability and Security Companion(QRS‑C). Portugal: IEEE, 2018: 221‑228. |
66 | VANSTEENKISTE E. New FPGA Design Tools and Architectures[D]. Ghent: Ghent University, 2016. |
67 | VERCRUYCE D, VANSTEENKISTE E, STROOBAN‑ DT D. CRoute: A fast high-quality timing-driven connection-based FPGA router[C]//2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines(FCCM). USA: IEEE, 2019: 53‑60. |
68 | MURRAY K E, ZHONG S, BETZ V. AIR: A fast but lazy timing-driven FPGA router[C]//2020 25th Asia and South Pacific Design Automation Conference(ASP-DAC). China: IEEE, 2020: 338‑344. |
69 | STOJILOVIC M. Parallel FPGA routing: Survey and challenges[C]//2017 27th International Conference on Field Programmable Logic and Applications(FPL). Belgium: IEEE, 2017: 1‑8. |
70 | HOO C H, HA Y H, KUMAR A. ParaFRo: A hybrid parallel FPGA router using fine grained synchronization and partitioning[C]//2016 26th International Conference on Field Programmable Logic and Applications(FPL). Switzerland: IEEE, 2016: 1‑11. |
71 | SHEN M H, LUO G J, XIAO N. Exploiting box expansion and grid partitioning for parallel FPGA routing[C]// 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines(FCCM). USA: IEEE, 2018: 209‑209. |
72 | KORILIJA D, STOJILOVIC M. FPGA-assisted deterministic routing for FPGAs[C]//2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Brazil: IEEE, 2019: 155‑162. |
73 | CHAN P K, SCHLAG M D F. Acceleration of an FPGA router[C]//The 5th Annual IEEE Symposium on Field‑Progra‑ mmable Custom Computing Machines Cat. USA: IEEE, 1997: 175‑181. |
74 | CHAN P K, SCHLAG M D F, EBELING C, et al. Distributed-memory parallel routing for field-programmable gate arrays[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2000, 19(8): 850‑862. |
75 | GORT M, ANDERSON J H. Accelerating FPGA routing through parallelization and engineering enhancements special section on PAR-CAD 2010[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31(1): 61‑74. |
76 | SHEN M H, LUO G J. Accelerate FPGA routing with parallel recursive partitioning[C]//2015 IEEE/ACM International Conference on Computer-Aided Design(ICCAD). USA: IEEE, 2015: 118‑125. |
77 | SHEN M H, LUO G J, XIAO N. Coarse-grained parallel routing with recursive partitioning for FPGAs[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(4): 884‑899. |
78 | WANG D K, DUAN Z H, TIAN C, et al. ParRA: A shared memory parallel FPGA router using hybrid partitioning approach[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(4): 830‑842. |
79 | GORT M, ANDERSON J H. Deterministic multi-core parallel routing for FPGAs[C]//2010 International Conference on Field-Programmable Technology. China: IEEE, 2010: 78‑86. |
80 | SHEN M H, XIAO N. Fine-grained parallel routing for FPGAs with selective expansion[C]//2018 IEEE 36th International Conference on Computer Design(ICCD). USA: IEEE, 2018: 577‑586. |
81 | LIU L, KAPRE N. Timing-aware routing in the RapidWright framework[C]//2019 29th International Conference on Field Programmable Logic and Applications (FPL). Spain: IEEE, 2019: 24‑30. |
82 | SHEN M H, LUO G J, XIAO N. Exploring GPU-accelerated routing for FPGAs[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30(6): 1331‑1345. |
83 | MOCTAR Y O M, BRISK P. Parallel FPGA routing based on the operator formulation[C]//2014 51st ACM/EDAC/IEEE Design Automation Conference(DAC)[C]. USA: IEEE, 2014. 1‑6. |
84 | MOCTAR Y, STOJILOVIC M, BRISK P. Deterministic parallel routing for FPGAs based on Galois parallel execution model[C]//2018 28th International Conference on Field Programmable Logic and Applications(FPL). Ireland: IEEE, 2018: 21‑25. |
85 | ZHU C, WANG J, LAI J M. A novel net-partition-based multithread FPGA routing method[C]//2013 23rd International Conference on Field programmable Logic and Applications. Portugal: IEEE, 2013: 1‑4. |
[1] | 张建民, 黎铁军, 马柯帆, 肖立权. 一种加速FPGA布线的不可满足子式求解算法[J]. 电子学报, 2021, 49(6): 1210-1216. |
[2] | 罗阳锦, 张升伟, 陆浩. 高光谱微波辐射计宽带高速数字系统设计[J]. 电子学报, 2021, 49(2): 380-386. |
[3] | 王卫杰, 胡少亮, 郑宇腾, 赵振国, 周海京. 并行预处理有限元方法及其在系统级封装结构电磁模拟中的应用[J]. 电子学报, 2021, 49(1): 58-63. |
[4] | 孙志卓, 黄洪, 张全新, 谭毓安, 李元章, 张小松. 一种能耗优化的RAID小写预读方法[J]. 电子学报, 2019, 47(9): 1987-1993. |
[5] | 曹保锋, 郑毅, 李鹏, 张雪芹, 李欣, 李小强, 胡淼. 微弱电磁脉冲信号低失真度实时检测的FPGA实现[J]. 电子学报, 2019, 47(8): 1797-1802. |
[6] | 刘公绪, 史凌峰, 辛东金. 基于FPGA的零误差大数阶乘算法的设计与实现[J]. 电子学报, 2019, 47(5): 1180-1184. |
[7] | 王卫杰, 陈晓洁, 周海京. 基于区域分解的大规模并行有限元快速算法[J]. 电子学报, 2019, 47(3): 741-747. |
[8] | 曲志坚, 陈宇航, 李盘靖, 刘晓红, 李彩虹. 基于多算子协同进化的自适应并行量子遗传算法[J]. 电子学报, 2019, 47(2): 266-273. |
[9] | 杨林峰, 胡桂莉, 张晨, 张振荣. 基于CPU-GPU协同并行内点算法求解结构化非线性规划[J]. 电子学报, 2019, 47(2): 382-389. |
[10] | 佟星元, 王超峰, 贺璐璐, 董嗣万. 基于QN旋转布局的10位500MS/s分段电流舵DAC[J]. 电子学报, 2019, 47(11): 2304-2310. |
[11] | 闵富红, 金秋森. 双忆阻Shinriki振荡器的超级多稳态和反单调性分析[J]. 电子学报, 2019, 47(11): 2263-2270. |
[12] | 闫青丽, 陈建峰. 分布式声源定位系统节点最优布局方法及性能研究[J]. 电子学报, 2018, 46(5): 1186-1193. |
[13] | 王今雨, 伍卫国, 秦朝楠, 赵东方, 聂世强. UPRFloor:一种动态可重构FPGA建模方法与布局策略[J]. 电子学报, 2018, 46(12): 2862-2869. |
[14] | 李冰, 周岑军, 陈帅, 吉建华. 用于SRAM PUFs的伪随机数发生器的FPGA实现[J]. 电子学报, 2017, 45(9): 2106-2112. |
[15] | 吴珊, 周学功, 王伶俐. 基于SRAM型FPGA单粒子效应的故障传播模型[J]. 电子学报, 2017, 45(8): 1976-1984. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||