1 |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2007, 16(8): 2080-2095.
|
2 |
GU S H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 2862-2869.
|
3 |
MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 2272-2279.
|
4 |
DONG W S, ZHANG L, SHI G M, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620-1630.
|
5 |
BUADES A, COLL B, MOREL J M. Nonlocal image and movie denoising[J]. International Journal of Computer Vision, 2008, 76(2): 123-139.
|
6 |
WEISS Y, FREEMAN W T. What makes a good model of natural images?[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1-8.
|
7 |
DABOV K, FOI A, EGIAZARIAN K. Video denoising by sparse 3D transform-domain collaborative filtering[C]//Proceedings of the 2007 European Signal Processing Conference. Poznan: IEEE, 2007.145-149.
|
8 |
MAGGIONI M, BORACCHI G, FOI A, et al. Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms[J]. IEEE Transactions on Image Processing, 2012, 21(9): 3952-3966.
|
9 |
ARIAS P, MOREL J M. Towards a Bayesian Video Denoising Method[M]//Advanced Concepts for Intelligent Vision Systems. Cham: Springer International Publishing, 2015: 107-117.
|
10 |
ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
|
11 |
DAVY A, EHRET T, MOREL J M, et al. A non-local CNN for video denoising[C]//2019 IEEE International Conference on Image Processing. Taipei: IEEE, 2019: 2409-2413.
|
12 |
IANDOLA F N, MOSKEWICZ M W, ASHRAF K, et al. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size[EB/OL]. (2016)[2021]. .
|
13 |
HOWARD A, ZHU M, CHEN B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. (2017)[2021]. .
|
14 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807.
|
15 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices[EB/OL]. (2017)[2021]. .
|
16 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 1577-1586.
|
17 |
孟琭, 徐磊, 郭嘉阳. 一种基于改进的MobileNetV2网络语义分割算法[J]. 电子学报, 2020, 48(9): 1769-1776.
|
|
MENG L, XU L, GUO J Y. Semantic segmentation algorithm based on improved MobileNetV2[J]. Acta Electronica Sinica, 2020, 48(9): 1769-1776. (in Chinese)
|
18 |
IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. New York: ACM, 2015: 448-456.
|
19 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2012 International Conference on Neural Information Processing Systems. Doha: Curran Associates Inc., 2012: 1097-1105.
|
20 |
TASSANO M, DELON J, VEIT T. FastDVDnet: towards real-time deep video denoising without flow estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2020: 1351-1360.
|
21 |
PONT-TUSET J, PERAZZI F, CAELLES S, et al. The 2017 DAVIS Challenge on Video Object Segmentation[EB/OL]. (2018)[2021]. .
|
22 |
KINGMA D, BA J. Adam: A Method for Stochastic Optimization[EB/OL]. (2017)[2021]. .
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|