1 |
PEI Z, QI X, ZHANG Y, et al. Human trajectory prediction in crowded scene using social-affinity long short-term memory[J]. Pattern Recognition, 2019, 93: 273-282.
|
2 |
YAMAGUCHI K, BERG A C, ORTIZ L E, et al. Who are you with and where are you going?[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs: IEEE, 2011: 1345-1352.
|
3 |
DESOUZA G N, KAK A C. Vision for mobile robot navigation: A survey[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(2): 237-267.
|
4 |
RUDENKO A, PALMIERI L, HERMAN M, et al. Human motion trajectory prediction: A survey [J]. The International Journal of Robotics Research, 2020. 39(8): 895-935.
|
5 |
李康, 李亚敏, 胡学敏, 等. 基于卷积神经网络的鲁棒高精度目标跟踪算法[J]. 电子学报, 2018, 46(9): 2087-2093.
|
|
LI K, LI Y M, HU X M, et al. A robust and accurate object tracking algorithm based on convolutional neural network[J]. Acta Electronica Sinica, 2018, 46(9): 2087-2093.(in Chinese)
|
6 |
马少雄, 邱实, 唐颖, 等. 基于工地场景的深度学习目标跟踪算法 [J]. 电子学报, 2020, 48(9): 1665-1671.
|
|
MA S X, QIU S, TANG Y, et al. Deep learning target tracking algorithm based on construction site scene[J]. Acta Electronica Sinica, 2020, 48(9): 1665-1671. (in Chinese)
|
7 |
S-C B LO, CHAN H-P, LIN J-S, et al. Artificial convolution neural network for medical image pattern recognition[J]. Neural Networks, 1995, 8(7-8): 1201-1214.
|
8 |
PELLEGRINI S, ESS A, VAN G L. Improving data association by joint modeling of pedestrian trajectories and groupings[C]//Proceedings of the European Conference on Computer Vision. Crete: Springer, 2010: 452-465.
|
9 |
LERNER A, CHRYSANTHOU Y, LISCHINSKI D. Crowds by example[C]//Proceedings of the Computer Graphics Forum. Oxford: Blackwell Publishing Ltd, 2007: 26(3): 655-664.
|
10 |
HELBING D, MOLNAR P. Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51(5): 4282-4286.
|
11 |
KITANI K M, ZIEBART B D, BAGNELL J A, et al. Activity forecasting[C]//Proceedings of the European Conference on Computer Vision. Florence, Italy: Springer, 2012: 201-214.
|
12 |
LEE N, CHOI W, VERNAZA P, et al. Desire: Distant future prediction in dynamic scenes with interacting agents[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2017: 336-345.
|
13 |
PELLEGRINI S, ESS A, SCHINDLER K, et al. You'll never walk alone: Modeling social behavior for multi-target tracking[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 261-268.
|
14 |
MOUSSAID M, PEROZO N, GARNIER S, et al. The walking behaviour of pedestrian social groups and its impact on crowd dynamics[J]. Plos One, 2010, 5(3): e10047.
|
15 |
XU Y, PIAO Z, GAO S. Encoding crowd interaction with deep neural network for pedestrian trajectory prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 5275-5284.
|
16 |
ZHAO T, XU Y, MONFORT M, et al. Multi-agent tensor fusion for contextual trajectory prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 12126-12134.
|
17 |
ALAHI A, RAMANATHAN V, FEI F L. Socially-aware large-scale crowd forecasting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 2203-2210.
|
18 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human trajectory prediction in crowded spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 961-971.
|
19 |
BALLAN L, CASTALDO F, ALAHI A, et al. Knowledge transfer for scene-specific motion prediction[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016: 697-713.
|
20 |
LIU J, SHAHROUDY A, XU D, et al. Spatio-temporal LSTM with trust gates for 3d human action recognition[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016: 816-833.
|
21 |
ROBICQUET A, SADEGHIAN A, ALAHI A, et al. Learning social etiquette: Human trajectory understanding in crowded scenes[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016: 549-565.
|
22 |
ALTCHÉ F, DEL A. An LSTM network for highway trajectory prediction[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama, Japan: IEEE, 2017: 353-359.
|
23 |
CHENG B, XU X, ZENG Y J, et al. Pedestrian trajectory prediction via the social-grid LSTM model[J]. Journal of Engineering-Joe, 2018, 2018(16): 1468-1474.
|
24 |
FERNANDO T, DENMAN S, SRIDHARAN S, et al. Soft+hardwired attention: An LSTM framework for human trajectory prediction and abnormal event detection[J]. Neural Network, 2018, 108(1): 466-478.
|
25 |
ZHANG P, OUYANG W, ZHANG P, et al. SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 12085-12094.
|
26 |
金苍宏, 董腾然, 陈天翼, 等. 融合序列分解与时空卷积的时序预测算法[J]. 电子学报, 2021, 49(2): 233-238.
|
|
JIN C H, DONG T R, CHEN T Y, et al. Spatio-temporal convolutional forecasting based on time-series decomposition strategy [J]. Acta Electronica Sinica, 2021, 49(2): 233-238. (in Chinese)
|
27 |
GUPTA A, JOHNSON J, FEI F L, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 2255-2264.
|
28 |
SADEGHIAN A, KOSARAJUV. et al . Sophie: An attentive GAN for predicting paths compliant to social and physical constraints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 1349-1358.
|
29 |
李志欣, 孙亚茹, 唐素勤, 等. 双路注意力引导图卷积网络的关系抽取[J]. 电子学报, 2021, 49(2): 315-323.
|
|
Li Z X, Sun Y R, Tang S Q, et al. Dual attention guided graph convolutional networks for relation extraction[J]. Acta Electronica Sinica, 2021, 49(2): 315-323. (in Chinese)
|
30 |
VEMULA A, MUELLING K, OH J. Social attention: Modeling attention in human crowds[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. China: IEEE, 2018: 4601-4607.
|
31 |
KOSARAJU V, SADEGHIAN A, MARTÍN M R, et al. Social-BIGAT: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C]//Proceedings of the Advances in Neural Information Processing Systems. Vancouver, Canada: NIPS, 2019: 137-146.
|
32 |
DAI Z, YANG Z, YANG Y, et al. Transformer-XL: Attentive language models beyond a fixed-length context[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL,2019:2978-2988.
|