1 |
杜洁. 基于故障树技术的铁路信号设备故障诊断专家系统的实现方法研究[D]. 北京: 北京交通大学, 2009.
|
|
DU J. Research on Expert System Implementation of Railway Signal Equipment Fault Diagnosis Based on Fault Tree Analysis[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese)
|
2 |
CAO Y, LI P, ZHANG Y Z. Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing[J]. Future Generation Computer Systems, 2018, 88: 279-283.
|
3 |
LI Z, YIN Z, TANG T, et al. Fault diagnosis of railway point machines using the locally connected autoencoder[J]. Applied Sciences, 2019, 9(23): 5139.
|
4 |
SHAO K X, FU W L, TAN J W, et al. Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris Hawks optimization-based SVM for fault diagnosis of rolling bearing[J]. Measurement, 2021, 173: 108580.
|
5 |
HUANG N, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-998.
|
6 |
CAO Y, ZHANG Y Z, WEN T, et al. Research on dynamic nonlinear input prediction of fault diagnosis based on fractional differential operator equation in high-speed train control system[J]. Robotics & Maching Learning, 2019, 29(1): 340-346.
|
7 |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
|
8 |
张安安, 黄晋英, 冀树伟, 等. 基于卷积神经网络图像分类的轴承故障模式识别[J]. 振动与冲击, 2020, 39(4): 165-171.
|
|
ZHANG A A, HUANG J Y, JI S W, et al. Bearing fault pattern recognition based on image classification with CNN[J]. Journal of Vibration and Shock, 2020, 39(4): 165-171. (in Chinese)
|
9 |
高军峰, 司慧芳, 余彬, 等. 基于脑电样本熵的测谎分析[J]. 电子学报, 2017, 45(8): 1836-1841.
|
|
GAO J F, SI H F, YU B, et al. Lie detection analysis based on the sample entropy of EEG[J]. Acta Electronica Sinica, 2017, 45(8): 1836-1841. (in Chinese)
|
10 |
王志坚, 常雪, 王俊元, 等. 排列熵优化改进变模态分解算法诊断齿轮箱故障[J]. 农业工程学报, 2018, 34(23): 59-66.
|
|
WANG Z J, CHANG X, WANG J Y, et al. Gearbox fault diagnosis based on permutation entropy optimized variational mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 59-66. (in Chinese)
|
11 |
ROSTAGHI M, AZAMI H. Dispersion entropy: A measure for time-series analysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 610-614.
|
12 |
张学军, 景鹏, 何涛, 等. 基于变分模态分解的癫痫脑电信号分类方法[J]. 电子学报, 2020, 48(12): 2469-2475.
|
|
ZHANG X J, JING P, HE T, et al. An epileptic electroencephalogram signal classification method based on variational mode decomposition[J]. Acta Electronica Sinica, 2020, 48(12): 2469-2475. (in Chinese)
|
13 |
YAN X A, JIA M P. Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection[J]. Knowledge-Based Systems, 2019, 163: 450-471.
|
14 |
COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2002, 89(6): 068102.
|
15 |
AZAMI H, ESCUDERO J. Coarse-graining approaches in univariate multiscale sample and dispersion entropy[J]. Entropy (Basel, Switzerland), 2018, 20(2): 138.
|
16 |
LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47.
|
17 |
ZHANG X Y, LIANG Y T, ZHOU J Z, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J]. Measurement, 2015, 69: 164-179.
|
18 |
KRAMAR V A, ALCHAKOV V V, DUSHKO V R, et al. Application of support vector machine for prediction and classification[J]. Journal of Physics: Conference Series, 2018, 1015: 032070.
|
19 |
DWIVEDI R, DIKSHIT O. A comparison of particle swarm optimization (PSO) and genetic algorithm (GA) in second order design (SOD) of GPS networks[J]. Journal of Applied Geodesy, 2013, 7(2): 135-145.
|
20 |
张敏, 蔡振宇, 包珊珊. 基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J]. 西南交通大学学报, 2019, 54(3): 633-639, 662.
|
|
ZHANG M, CAI Z Y, BAO S S. Fault diagnosis of rolling bearing based on EEMD-Hilbert and FWA-SVM[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639, 662. (in Chinese)
|
21 |
车一鸣, 王冬梅, 王国兴, 等. 基于IMDE和ORF模型的断路器工况识别[J]. 组合机床与自动化加工技术, 2019(12): 85-90.
|
|
CHE Y M, WANG D M, WANG G X, et al. Working condition identification of circuit breaker based on IMDE and ORF model[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(12): 85-90. (in Chinese)
|
22 |
LIU B, WANG R M, PENG Z Q, et al. Identification of denatured biological tissues based on compressed sensing and improved multiscale dispersion entropy during HIFU treatment[J]. Entropy (Basel, Switzerland), 2020, 22(9): 944.
|
23 |
任强, 官晟, 王凤军, 等. 基于EEMD和PSO-SVM的电机气隙偏心故障诊断[J]. 组合机床与自动化加工技术, 2021(2): 73-76, 85.
|
|
REN Q, GUAN S, WANG F J, et al. Motor air-gap eccentricity fault diagnosis based on EEMD and PSO-SVM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(2): 73-76, 85. (in Chinese)
|