1 |
郭桂蓉, 庄钊文, 陈曾平. 电磁特征抽取与目标识别[M]. 长沙: 国防科技大学出版社, 1996.
|
2 |
王强, 宋京民, 胡建平, 等. 一种快速模板匹配目标识别算法[J]. 计算机工程与应用, 2000, 36(6): 42-43, 69.
|
|
WANGQ, SONGJ M, HUJ P, et al. A improved template matching algorithm of target recognition[J]. Computer Engineering and Applications, 2000, 36(6): 42-43, 69. (in Chinese)
|
3 |
郭俊锋, 李言俊, 张科. 利用小波变换进行空间目标电磁特征提取与识别[J]. 火力与指挥控制, 2008, 33(2): 13-15, 20.
|
|
GUOJ F, LIY J, ZHANGK. Study on space target electromagnetic signature extraction and recognition using wavelet transform[J]. Fire Control and Command Control, 2008, 33(2): 13-15, 20. (in Chinese)
|
4 |
张量, 刘洋, 王飞, 等. 基于电磁散射特征参数提取与数据分布分析的非线性目标识别[J]. 电波科学学报, 2019, 34(1): 52-59.
|
|
ZHANGL, LIUY, WANGF, et al. Nonlinear target recognition based on electromagnetic scattering feature parameter extraction and data distribution analysis[J]. Chinese Journal of Radio Science, 2019, 34(1): 52-59. (in Chinese)
|
5 |
尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48-59.
|
|
YINB C, WANGW T, WANGL C. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. (in Chinese)
|
6 |
ZHENGS L, CHENS C, YANGL F, et al. Big data processing architecture for radio signals empowered by deep learning: Concept, experiment, applications and challenges[J]. IEEE Access, 2018, 6: 55907-55922.
|
7 |
鲜佩, 张晓芸, 高昭昭. 基于CNN的电磁辐射源目标识别算法[J]. 电子信息对抗技术, 2020, 35(2): 34-38.
|
|
XIANP, ZHANGX Y, GAOZ Z. Electromagnetic radiation source target recognition algorithm based on CNN[J]. Electronic Information Warfare Technology, 2020, 35(2): 34-38. (in Chinese)
|
8 |
GAMAF, MARQUESA G, LEUSG, et al. Convolutional neural network architectures for signals supported on graphs[J]. IEEE Transactions on Signal Processing, 2019, 67(4): 1034-1049.
|
9 |
田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320-325.
|
|
TIANZ Z, ZHANR H, HUJ M, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320-325. (in Chinese)
|
10 |
O'SHEAT J, ROYT, CLANCYT C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179.
|
11 |
徐彬, 陈渤, 刘家麒, 等. 采用双向LSTM模型的雷达HRRP目标识别[J]. 西安电子科技大学学报, 2019, 46(2): 29-34.
|
|
XUB, CHENB, LIUJ Q, et al. Radar HRRP target recognition by the bidirectional LSTM model[J]. Journal of Xidian University, 2019, 46(2): 29-34. (in Chinese)
|
12 |
李东瑾, 杨瑞娟, 李晓柏, 等. 基于核协同表示与鉴别投影的辐射源调制识别[J]. 电子学报, 2020, 48(9): 1695-1702.
|
|
LID J, YANGR J, LIX B, et al. Emitter signal modulation recognition based on kernel collaborative representation and discriminative projection[J]. Acta Electronica Sinica, 2020, 48(9): 1695-1702. (in Chinese)
|
13 |
秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48(3): 456-462.
|
|
QINX, HUANGJ, ZHAX, et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48(3): 456-462. (in Chinese)
|
14 |
李东瑾, 杨瑞娟, 李晓柏, 等. 基于栈式稀疏降噪自编码网络的辐射源调制识别[J]. 电子学报, 2020, 48(6): 1198-1204.
|
|
LID J, YANGR J, LIX B, et al. Emitter signal modulation recognition based on stacked sparse denoising auto-encoders[J]. Acta Electronica Sinica, 2020, 48(6): 1198-1204. (in Chinese)
|
15 |
蔡晶烨. 多模式数字通信电台中的调制解扩解调模块实现[D]. 成都: 电子科技大学, 2008.
|
|
CAIJ Y. Implementation of Modulation, Dispreading, and Demodulation Modules in Multi-Mode Digital Radio Transmission Broadcasting Station[D]. Chengdu: University of Electronic Science and Technology of China, 2008. (in Chinese)
|
16 |
阳榴, 朱卫纲, 吕守业, 等. 多功能雷达工作模式识别方法综述[J]. 电讯技术, 2020, 60(11): 1384-1390.
|
|
YANGL, ZHUW G, LYUS Y, et al. Review of multi-function radar mode identification methods[J]. Telecommunication Engineering, 2020, 60(11): 1384-1390. (in Chinese)
|
17 |
王沙飞, 李岩, 徐迈. 认知电子战原理与技术[M]. 北京: 国防工业出版社, 2018.
|
|
WANGS F, LIY, XUM. Principle and Technology of Cognitive Electronic Warfare[M]. Beijing: National Defense Industry Press, 2018. (in Chinese)
|
18 |
HEH B, GARCIAE A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
|
19 |
KRAWCZYKB. Learning from imbalanced data: Open challenges and future directions[J]. Progress in Artificial Intelligence, 2016, 5(4): 221-232.
|
20 |
钱云. 非均衡数据分类算法若干应用研究[D]. 长春: 吉林大学, 2014.
|
|
QIANY. Research on Application of Classification Algorithms for Imbalanced Data[D]. Changchun: Jilin University, 2014. (in Chinese)
|
21 |
CHAWLAN V, BOWYERK W, HALLL O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
|
22 |
STEFANOWSKIJ. Dealing with Data Difficulty Factors While Learning from Imbalanced Data Challenges in Computational Statistics and Data Mining[M]. Switzerland: Springer, 2016: 333-363.
|
23 |
冯宏伟, 姚博, 高原, 等. 基于边界混合采样的非均衡数据处理算法[J]. 控制与决策, 2017, 32(10): 1831-1836.
|
|
FENGH W, YAOB, GAOY, et al. Imbalanced data processing algorithm based on boundary mixed sampling[J]. Control and Decision, 2017, 32(10): 1831-1836. (in Chinese)
|
24 |
包萍, 刘运节. 不均衡数据集下基于生成对抗网络的改进深度模型故障识别研究[J]. 电子测量与仪器学报, 2019, 33(3): 176-183.
|
|
BAOP, LIUY J. Research on fault identification based on improved deep model in combination of generative adversarial networks under unbalanced data sets[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(3): 176-183. (in Chinese)
|
25 |
谷琼, 袁磊, 宁彬, 等. 一种基于混合重取样策略的非均衡数据集分类算法[J]. 计算机工程与科学, 2012, 34(10): 128-134.
|
|
GUQ, YUANL, NINGB, et al. A novel classification algorithm for imbalanced datasets based on hybrid resampling strategy[J]. Computer Engineering & Science, 2012, 34(10): 128-134. (in Chinese)
|
26 |
ZHOUZ H, LIUX Y. On multi-class cost-sensitive learning[J]. Computational Intelligence, 2010, 26(3): 232-257.
|
27 |
谷琼, 袁磊, 熊启军, 等. 基于非均衡数据集的代价敏感学习算法比较研究[J]. 微电子学与计算机, 2011, 28(8): 146-149, 153.
|
|
GUQ, YUANL, XIONGQ J, et al. A comparative study of cost-sensitive learning algorithm based on imbalanced data sets[J]. Microelectronics & Computer, 2011, 28(8): 146-149, 153. (in Chinese)
|
28 |
JAPKOWICZN, MYERSC, GLUCKM. A novelty detection approach to classification//Proceedings of the 14th International Joint Conference on Artificial Intelligence. Montreal: Morgan Kaufmann Publishers Inc, 1995: 518-523.
|
29 |
KRAWCZYKB, WOŹNIAKM, HERRERAF. On the usefulness of one-class classifier ensembles for decomposition of multi-class problems[J]. Pattern Recognition, 2015, 48(12): 3969-3982.
|
30 |
张旭, 周新志, 赵成萍, 等. 基于犹豫模糊决策树的非均衡数据分类[J]. 计算机工程, 2019, 45(8): 75-79, 91.
|
|
ZHANGX, ZHOUX Z, ZHAOC P, et al. Unbalanced data classification based on hesitant fuzzy decision tree[J]. Computer Engineering, 2019, 45(8): 75-79, 91. (in Chinese)
|
31 |
钟瑛, 朱顺痣, 曾志强, 等. 一种基于核学习的非均衡数据分类算法[J]. 厦门大学学报(自然科学版), 2012, 51(2): 189-194.
|
|
ZHONGY, ZHUS Z, ZENGZ Q, et al. A classfication method for imbalance dataset based on kernel learning[J]. Journal of Xiamen University (Natural Science), 2012, 51(2): 189-194. (in Chinese)
|
32 |
WANGZ, YEX J, WANGC K, et al. Network embedding with completely-imbalanced labels[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(11): 3634-3647.
|
33 |
李卓然, 张永. 基于集成的非均衡数据分类主动学习算法[J]. 计算机应用与软件, 2012, 29(6): 81-83, 88.
|
|
LIZ R, ZHANGY. Imbalanced data classification active learning algorithm based on boosting[J]. Computer Applications and Software, 2012, 29(6): 81-83, 88. (in Chinese)
|
34 |
WOŹNIAKM, GRAÑAM, CORCHADOE. A survey of multiple classifier systems as hybrid systems[J]. Information Fusion, 2014, 16: 3-17.
|
35 |
WANGS Z, LIZ J, CHAOW H, et al. Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning[C]//The 2012 International Joint Conference on Neural Networks(IJCNN). Brisbane: IEEE, 2012: 1-8.
|
36 |
LIUS J, SHIQ, ZHANGL P. Few-shot hyperspectral image classification with unknown classes using multitask deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 5085-5102.
|
37 |
DONGY H, JIANGX H, ZHOUH J, et al. SR2CNN: zero-shot learning for signal recognition[J]. IEEE Transactions on Signal Processing, 2021, 69: 2316-2329.
|
38 |
徐丹蕾, 杜兰, 王鹏辉, 等. 采用多任务稀疏学习的雷达HRRP小样本目标识别[J]. 西安电子科技大学学报, 2016, 43(2): 23-28.
|
|
XUD L, DUL, WANGP H, et al. Radar HRRP target recognition by utilizing multitask sparse learning with a small training data size[J]. Journal of Xidian University, 2016, 43(2): 23-28. (in Chinese)
|
39 |
兰红, 方治屿. 零样本图像识别[J]. 电子与信息学报, 2020, 42(5): 1188-1200.
|
|
LANH, FANGZ Y. Recent advances in zero-shot learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1188-1200. (in Chinese)
|
40 |
ZHOUH J, JIAOL C, ZHENGS L, et al. Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework[J]. China Communications, 2020, 17(10): 157-169.
|
41 |
DONGY H, JIANGX H, CHENGL, et al. SSRCNN: A semi-supervised learning framework for signal recognition[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(3): 780-789.
|
42 |
TAOR, GAVVESE, SMEULDERSA W M. Siamese instance search for tracking[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1420-1429.
|
43 |
WANGX, HANX T, HUANGW L, et al. Multi-similarity loss with general pair weighting for deep metric learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 5017-5025.
|